

 B-CONW
Table of Contents

 Brodersen Controls A/S � Industrivej 3 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

1

 Table of Contents

 1. Introduction to B-CONW for Windows 95/NT. ..3

 1.1 Installation/Get started. ...4

 2. Programming...5

 2.1 Data types and formats ...5
 2.2 Numbering of inputs and outputs ..6
 2.3 Use of symbols ..7
 2.4 Set up of data ..8
 2.5 How to build a B-CON programme ...9
 2.6 Debugging a B-CON programme..11
 2.7 Compilation and Download. ..13

 3. Programming...15

 3.1 Description of the Language ...15
 3.1.1 Organization of programs...15
 3.1.2 Elements for Program Control..20
 3.1.3 Compiler Errors ...28
 3.1.4 Runtime Error / Warning flags..33
 3.1.5 Examples of B-CON programs..34
 3.1.6 List of sample programs...37

 3.2 Basic Logical Instructions..38

 3.2.1 Load Instructions ..38
 3.2.2 Store Instructions..39
 3.2.3 Set and Reset Instructions ...40
 3.2.4 Dominant Setting and Resetting ..41
 3.2.5 Logical AND Instructions..43
 3.2.6 Logical OR Instructions ..48
 3.2.7 Logical XOR Instructions..51

 3.3 SHIFT Instructions...56

 3.4 Arithmetic Instructions ...58

 3.4.1 Add Instructions..58
 3.4.2 Subtract Instructions...61
 3.4.3 Multiply Instructions..62
 3.4.4 Divide Instructions ..64

 3.5 Compare Instructions ..66

 3.5.1 Compare, Greater ..66
 3.5.2 Compare Greater or Equal...71
 3.5.3 Compare, Equal ...75
 3.5.4 Compare, Less or Equal..79
 3.5.5 Compare, less than ..85

 3.6 Jump Instructions ..91

 3.6.1 Unconditional Jump..91
 3.6.2 Conditional Jump..92

 B-CONW
Table of Contents

 Brodersen Controls A/S � Industrivej 3 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

2

 3.7 Auxiliary / Special Instructions...94

 3.7.1 Duplicate...94
 3.7.2 No Operation Instruction ..97
 3.7.3 End of Program Instruction...97
 3.7.4 Move Instructions ...98
 3.7.5 Block Move (Remote Master and B-CON Master only)..99
 3.7.6 Function / Subroutines ...100
 3.7.7 Special Instructions ..104

 3.8 TIMERS (B-CON S only)...106

 3.8.1 Edge Recognition ...108
 3.8.2 On Delay...109
 3.8.3 Off Delay...110
 3.8.4 Clock...111

 3.9 Counters ..113

 3.9.1 Counter Up ...110
 3.9.2 Counter Down...115
 3.9.3 Reversive Up-Down Counter ...116

3.10 Triggers ...119

3.10.1 Reset Dominant Trigger ..116
3.10.2 Set RS Dominant Trigger ...117

 3.10.3 Positive Edge Recognition ...121
 3.10.4 Negative Edge Recognition..122

 Index ...124

1

 B-CONW
Introduction

 Brodersen Controls A/S � Industrivej 3 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

3

1. Introduction to B-CONW for Windows.

B-CONW for Windows is a programming language, designed to allow engineers to create control sequences and configuration
software for the System 2000 and RTU8/RTU-COM/RTU-870 range of products from Brodersen Control Systems A/S.

B-CONW can be used by both the engineer, who may not be formally educated in programming, and the experienced programmer
alike. B-CONW unlocks the power of the System 2000 and RTU modules, enabling them to perform complex control functions,
alarm monitoring and in the case of the RTU8/RTU-COM compact outstation, the logging of data.

The IEC1131 standard for programming software defines a range of software with the basic idea of achieving some common
standards being different hardware/software vendors. B-CONW uses the IEC1131-3 Instruction List standard.

The B-CONW software development package is run from a PC, where the programme is created, compiled into code, capable of
running in the System 2000 and RTU modules, tested for correct operation, and finally downloaded into the module.

In the development of B-CONW great importance has been attached to achieving an efficient programming cycle, editing,
compiling, and testing.

The creation of a programme consists of the following steps.

� The programme is created using the Instruction List format in the editor, to create the source code.

� The source code is then translated into a binary code by the compiler.

� The code can then be tested for correct operation using the Debug facilities.

� The resulting code is then downloaded, via the COM port or via the field bus using the IOTOOL32. (Please see
manual for information about IOTOOL32.)

Licence conditions.

B-CONW is a trade mark of Brodersen Controls A/S.
All rights reserved for Brodersen Controls A/S.
Copyright 1996 - 2007.

Which types of Brodersen modules can be programmed?

The B-CONW can be used to programme Brodersen modules which contain the B-CON facility.

Brodersen modules with B-CON facility:

 BITBUS slave modules with I/O with revision numbers 3.00 or higher.
 BITBUS slave modules with I/O containing /DL
 RTU modules with type numbers containing UCR
 REMOTE master modules with type numbers containing /RM

1.1

 B-CONW
Installation

 Brodersen Controls A/S � Industrivej 3 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

4

1.1 Installation/Get started.

The B-CONW Programming Tool is a bundled part of the IOTOOL32 Pro software package.
To install the B-CONW you must install the full IOTOOL32 Pro package using the installation programme supplied on the CD ROM.

Please refer to the IOTOOL32 Pro Programme Installation described in the IOTOOL32 Pro User’s Guide supplied with the
IOTOOL32 Pro Package.

Start up of B-CONW:

B-CONW is started from the I/O Explorer by clicking on the icon B-CON.

2.1

 B-CONW
Programming Conventions

Data types and formats

 Brodersen Controls A/S � Industrivej 3 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

5

2. Programming.

2.1 Data types and formats

A few basic points have to be explained before starting the programming:

� Specification of data types and formats
� Numbering of input and output
� Use of symbols
� Set up of data which should be available on the serial port of the module for communication with external

devices (not RM and BM modules)

Specification of data types and formats.

 B-CONW operates with 3 different data formats:

 - 1 Bit Basic logic unit Value range: 0 or 1
 B 1 Byte = 8 Bits Value range: -128 to 127
 W 1 Word =2 Bytes=16 Bits Value range:-32768 to 32767

 B-CONW operates with 5 different data types:

 I Input variable
 O or Q Output variable
 M Memory marker (internal relay/register)
 C Constant

 Constants can be entered as different value types:

 Bit constants can be entered as 1 or 0 without extension.
 Byte/Word constants can be entered as decimal value without extension or hexadecimal value with extension H.

Examples:
 I = Bit input
 BI = Byte input
 WO = Word output
 C1 = Bit constant value1
 BC100 = Byte contant decimal value 100
 WC4376 = Word constant decimal value 4376
 WC0fffH = Word constant hexadecimal value 0fff (Decimal 4095)

2.2

 B-CONW
Programming Conventions

Numbering of inputs and outputs

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

6

2.2 Numbering of inputs and outputs

The inputs and outputs of the Brodersen modules with B-CON facility are separated in 8 types:

 DI DO Digital inputs/outputs
 AI AO Analogue inputs/outputs
 ZI ZO Aux. inputs/outputs
 YI YO Aux. inputs/outputs (communication registers)

Each input/output type has its own numbering range for addressing.

 Numbering range for:

 DI/DO 0-1999 Bytewise
 AI/AO 2000-3999 Bytewise
 ZI/ZO 4000-5999 Bytewise
 YI/YO 6000-7999 Bytewise

 Examples of syntax for addressing:

 I0.2 Digital input bit 2 on input byte 0

 BO0 Digital output byte 0

 WI0 Digital input word 0. Covers both input byte 0 AND byte 1

 WI2 Digital input word 2. Covers both input byte 2 AND byte 3

 WI2000 Analogue input 0

Example of an island

2.3

 B-CONW
Programming Conventions

Use of symbols

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

7

2.3 Use of symbols

To ease the overview of a source code, it can be an advantage to use symbols instead of the basic names and numbers described
earlier.

A symbol can be a synonym for an input, output address, or a memory marker.
To define symbols, the following syntax has to be used:

 #define <symbol> <I/O address or memory marker>

Example:

 #define pump i0.3
 #define temp wi2000
 #define scale wm22

"pump", "temp" and "scale" can now be used in the B-CON programme instead of the standard I/O addresses and memory markers
and ease both the overview of writing the B-CON source code and the readability afterwards.

The define statements should be entered before the "main:" label. (See 2.5 for “How to build a B-CON programme”)

2.4

 B-CONW
Programming Conventions

Set up of data

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

8

2.4 Set up of data

Set up of data which should be available on the serial port of the module for communication with external devices (not
RM and BM modules).

Communication with the Master (typically a PC).

To communicate with the Master it is necessary to define which data should be accessable from the Master to and from the B-CON
slave, Remote slave, or RTU8 via the communication port on the module (Bitbus or Modbus).

The syntax for definition of the accessable data is:

 #define <type of data>_cnt <number of words>

Example:
 #define di_cnt 1
 #define ai_cnt 8
 #define yo_cnt 2

These define statements should be entered before the "main:" label. (See 2.5 for “How to build a B-CON programme”)

Example:

2.5

 B-CONW
Programming Conventions

How to build a B-CON programme

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

9

2.5 B-CON Environment/editer

COMPILE
DOWNLOAD

STEP/TRACE
BREAK/GO WATCH

COMMUNICATION DRIVER
• MODBUS
• BITBUS

DEVICE (MODULE) & ADDRESS
MASTER / SLAVE & SCAN TIME

COMPILE/DOWNLOAD
START / STOP

How to build a B-CON programme.

Click the icon "File" and choose "New".
You can now start editing the instruction list source code for your B-CON programme.
The label "main:" and an end command "ep" frames the programme. (See example below).

2.5

 B-CONW
Programming Conventions

How to build a B-CON programme

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

10

Comments can be added to the source text as documentation for the code.
All comments should start with "/". Any text entered after a "/" in a line will not be compiled to CPU code.

Important features when programming a Master.

When programming a Master you must first make a "Device Table" for the modules which are connected to the Network.

1. Choose the menu "Options" and choose "Communication and Program".

Select "Master" and Click "OK".

2. Enter "Options" again and choose "Device".

For the Master and each slave a table has to be filled out. See Example.

Please note that the Master must have the address No. 0 in the device table. Address switch on the module should be set to 1.
The numbers which must be entered are the number of words of each type.
If all modules are connected you can also let the B-CON programme read the configuration if you press "Autoconfig".

2.6

 B-CONW
Programming Conventions

Debugging a B-CON programme

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

11

2.6 Debugging a B-CON programme.

To debug your B-CON program you can use the debug facilities available in the “Debug” menu.

Note! Before you enter the “Debug” menu you must choose “Debug Option” in the “Communication and Program” menu under
“Option”.

When choosing “Yes” for “Debug option” only a part of the application program will be down loaded to the System 2000 module,
and the execution of the application program will be carried out in the PC instead.

In the “Debug” menu you will find different ways of executing the B-CON application:

 STEP: Each time F7 is pressed, the next line in the B-CON program is executed.

 TRACE: When F8 is pressed a slow execution of the B-CON application is started. In “Trace” mode it is

possible to follow the execution of the B-CON program line by line.

 RUN: Execution of the program as fast as possible in the PC.

 RESTART : Press shift F2 to restart the execution of the application program.

 STOP DEBUGGER: Stops the Debug function.

To help debugging it is possible to make break points in the program to stop the “Trace” function at specific lines in the program.

Place the cursor in the line where the break point should be and press F4.

2.6

 B-CONW
Programming Conventions

Debugging a B-CON programme

� Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

34.07
 40008

12

To monitor the M registers or inputs or outputs it is possible to activate Watch windows which will show the contents of the chosen
registers during the execution of the application program.

To set up a Watch window you can either press shift F7 or select the menu “Watch”.

You can now enter the names of the variables you want to watch/monitor as they are placed in a separate window on the screen.

2.7

 B-CONW
Programming Conventions
Compilation and download

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

13

2.7 Compilation and Download.

After finishing the Instruction list programming you should convert the code for use in the Remote Slave, RTU8, or I/O slave module
with B-CON facility.

It is carried out if you follow the below procedure:

1. Click the menu "Option" then "Communication and Program".

2. Choose the right communication way.

 "RS232" is used if you want to download directly via one of the COM ports (used if no System 2000 drivers are installed).

 "System 2000 I/O Drivers" is used if you want to download via one of the IOTOOL32 drivers.

3. Check the settings and press "OK".

4. Choose the right "Device type", Master or Slave as well as if you want to operate with the "Debug option" or not.

5. If you choose "Slave" you have to specify the "Scan time" for your B-CON programme.

6. Click "OK" when the right choices have been made.

7. Before downloading to a slave, it is necessary to choose the correct slave address.

Click "Options" and enter "Device".
Enter the address of the slave you want to download to and click "Update".
Click "OK" when the configuration of the Slave module has been read.

2.7

 B-CONW
Programming Conventions
Compilation and download

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

14

When downloading to a Master, keep the "Device table" already defined in chapter 2.5 "Programming a Master".

8. Enter the menu "Compile". Choose the command "Compile".

Correct the errors if the compiler returns an Error file and repeat the compilation procedure until the programme is error free.

9. When the programme is compiled and free of errors, you can use the "Down load" command to transfer it to the module.

10. Use the "Start" command to activate the down loaded programme in the module.

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

15

3. Programming

3.1 Description of the Language

IEC 1131 is an international standard for the development of PLC controllers and PLC programming languages. It was agreed upon
in 1990 and is generally applied for new PLC systems.
The standardization of instructions and command patterns contributes to the fact that programmers do not need to change their
familiar programming techniques when a PLC system is changed.

The programming language was developed according to direction IEC 1131 of working group 65A, which sets the standard for
programmable controls. The standard comprises 3 types of presentation:

 - Structured text
 - Instruction list
 - Function sets (macros)

In the following description of the instruction language, all the available IEC 1131 commands that are supported by B-CON are
discussed in detail.

3.1.1 Organization of Programs

A control program consists of a number of instructions. Each instruction is terminated with <RETURN>.
An instruction line can be supplemented by a comment.
In editing a program it must be noted that there must be an indentation of at least one <SPACE> or better a tab before an
instruction is written. In this free place the editor expects a jump label.

Commands
An instruction contains an OPERATOR (command) along with an optional MODIFIER, then follows a <SPACE> or a <TAB> and, if
necessary, one or more operands separated from each other by commas or <SPACE>.

Comments
A comment can be written either before the beginning of the program or in the instruction after the last element in the line. It is
introduced by the sign (/).

Labels
An instruction can be preceded by a label for the identification of this place. A label can have a length of up to 8 characters
including the end character. Its first sign must be a letter, not a figure. Special characters are not permitted. The label must be
terminated by a colon as end character (:). In the jump instruction, however, this colon must not be contained.

Example, section of the program:

The instruction (instruction line) was preceded by a mark called „MARK1“.

 LD IO.1 /load input variable
 JMPC MARK1 /jump target without colon

 MARK1 LD M1.1 /jump label with colon
 AND M5.5

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

16

Data types of operands
Operands can take the following data types:

 - Input variable
 - Output variable
 - Memory variable (marker variable)
 - Constant

The range of values for a variable depends on the selected operand format (bit, byte or word format).

Formats of operands
Operands can have 3 data formats:

 Bit It has the data length of 1 bit. This data format has 2 values, namely „logical true“ = 1 or „logical false“ = 0.

 Byte It has the data length of 8 bits, i.e. 1 Byte. This data format has a value range between +127 and -128, each value
 with a sign.

 Word It has the data length of 16 bits, i.e. 2 bytes. This data format has a value range between +32767 and -32768, each
 value with a sign.

Define symbols
The application programmer can define symbolically his own operand characteristics for variables and constants via the operator
#DEFINE. Thus he produces a relation to the process to be operated. In this way the control program becomes more
comprehensible.

It is a common practice to place DEFINE directives at the beginning of the program. Thus the programmer has good control of the
process inputs, process outputs and the assignment to markers. DEFINE directives can also be given within a program. This,
however, is not recommendable.

Examples:

#DEFINE terminator switch_S1 I1.1/assignment input bit I1.1
#DEFINE overload forward current_F1 I1.2/assignment input bit I1.2
#DEFINE pump_M1 O2.0 /assignment output bit O2.0

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

17

Application programming commands
The commands of the programming language according to IEC 1131 are described in detail. For each command a sample program
of general validity was developed referring in its application to a control module with input and output ports.

In order to access control modules from the B-CON card a reference protocol has to be defined in the program head declaring the
symbolical name of the device and the name of the module control program as illustrated above.
When inputs, outputs or markers of a module are to be operated from the master card, the symbolical name of the device must
always precede the variable definition separated by the point operator.

In the following the changes are shown necessary to transform a program of general validity (B-CON program) with module-
integrated inputs and outputs into a program capable of running under B-CON M:

B-CON sample program:

Logic instructions
The current programming language according to the directions of IEC 1131 provides an extended set of instructions which, contrary
to other PLC languages, permits instructions with nesting and the application of operands as stack.

The nesting rule consists in an instruction which represents the result of operand 1, operator (command) and operand 2.
The general nesting rule is determined as follows:

Result:= operand 1 operator operand 2

 <ACC> <ACC>

Example: (after preceding DEFINE directives!)

Operand 1 must principally be loaded into the ACC before the execution of a command or it is deliberately used as the result of a
previous operation.

According to the instruction this contents of the ACC is then connected with operand 2 and kept in the ACC as the new result.

Stack operations (without operand signifies)
Instructions (operations) with stack operands are a special option in the programming language at hand.
When there is no following operand or only a format signifies in an instruction, it is understood that this operand (operand 2) is in
the stack and a connective of the contents of the ACC and the stack is produced. Such instructions are permitted in bit, byte and
word format.
The allocation of the operands (which is which?) differs from the general pattern of instructions (sequence of operand allocation) in
operations with a stack operand.

 /P_AND.PGM
 /Example: AND conjunction in bit format

 ld i0.1 /OP1: load input
 and i0.2 /OP2: AND conjunction OP1 with OP2
 st o0.0 /RES: store in output
 ep /end of program

 LD OPERAND1 /load OPERAND1 in ACC
 AND OPERAND2 /AND nesting with OPERAND2
 ST RESULT /output of result

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

18

Example: (after previous DEFINE directives!)

Instructions for the different formats

 Bit format AND /without operand signifier
 Byte format AND B /operand sifnifier B=byte
 Word format AND W /operand signifier W=word

Operator modifiers
Operator modifier „N“ refers to the boolean negation of operand 2, which is carried out before the execution of the instruction.

Example: (after previous DEFINE directives!)

Jump label modifiers
Jump operators can be modified with modifiers „C“ and in combination with „CN“. Modifier „C“ means that the jump instruction is
carried out when the result of the connective is „logical true“, i.e. the boolean value is „1“ (contents of the ACC).

Modifier „CN“ means that the jump instruction is carried out when the result of the connective is „logical false“, i.e. the boolean value
is „0“ (contents of the ACC).

Examples:

End of program
Every program has to be terminated with the instruction „EP“.

 LD OPERAND1 /load OP1
 LD OPERAND2 /load OP2 as stack operand
 AND B /AND connective OP1 and OP2 as stack
 operand
 ST RESULT /output of the result

 LD OPERAND1 /load OPERAND1 into ACC
 ANDN OPERAND2 /AND connective with OPERAND2,
 /which is negated before the operation
 ST RESULT /output of the result

 JMPC MARK1/jump to MARK1 when
 /ACC contents is „1“
 /i.e. condition „TRUE“
 JMPCN MARK1/jump to MARK1 when
 /ACC contents is „0“
 /i.e. condition „false“
 JMP MARK3/jump to MARK3 unconditional
 /i.e. without any condition

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

19

Macros
Macros are defined sequences of commands which are similar to the operation of functions. They are invited by a macro name with
arguments as pass parameters. Different from functions they do not put out a return code.
A macro is not an invitation of special function routines but it is created by the internal combination of different B-CON command
sequences (B-CON operators).
A macro can be compared to a subprogram (subroutine) invited by the main program and passing on the necessary parameters.

The general invitation of a macro is declared as follows:

 M_name[(][ARG1[,arg2[,...,argn]]][)]

Explanations:

 M_name macro name to address and operate the macro

 arg1,arg2 ... argn macro arguments prescribed by the corresponding macro

 [...] elements in these brackets are optional
 arguments of a macro

Include
The include directive is used to include a files in current program position.

Using “#INCLUDE” files with program, definitions or data can included in the user program. The parameters, defined in the file,
that is included can be used as a standard parameters.
It is impossible to debug the file, included in the program. However, the values of parameters can be changed and watched.

Examples:

 #include PrgmFl.pgm
 #include DataFl.pgm

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

20

3.1.2 Elements for Program Control

In order to define how the control is to work, the handling of the programming language and the concept of the control must be
known.
Concerning the development of the user program it must be reagarded that the control consists of the following main elements:

Input Range

BI0

BI1

BIn-1

BInInput Bytes

Input Bytes

Input Bytes

Input Bytes

Stack

MB256

MB255

MB0

MB1

MB3

Marker Range

Marker Bytes0702h

0800h

07FFh Marker Bytes

Marker Bytes

0700h

0701h

Status Bytes

Marker Bytes

Accumulator

Program

Output Bytes

Output Bytes BOn

BOn-1

Output Bytes

Output Bytes

Output Range

BO1

BO0

C om m e n t :

2048 Bit Marker

 256 Bytes Marker

128 Word Marker

Accumulator
The accumulator is a logical unit wich consists either in loaded operand 1 or in the result after the execution of an instruction.
According to the data format used it has to be noted that the ACC has a format length of 8 or 16 bits.
The format length of 1 bit is represented by 1 byte, only bit Nr 0 being evaluated and bits 1 to 7 remaining unregarded.

Stack
The stack, also called nesting storage or push-down store, is a logical unit which stores results or operands temporarily.
The stack has a fixed data length of 8 bits. During the execution of the program a total of 8 bytes can be stored in the stack.

The operating mode of the stack is according to the LIFO principle (last in - first out), i.e. that the value stored last is unloaded first.
Cooperation with the ACC takes place automatically, e.g. by loading or unloading with each loading or storing.
Physically the stack is organized in such a way that its beginning is with the address assigned uppermost. Its symbolical address 1
thus lies on the storing address assigned uppermost and its symbolical address 8 lies on the lowest storing address.

With a load command the latest contents of the ACC is pushed into the stack and the stack address is decremented.
With store commands the stack contents loaded last is transported back into the ACC and the stack address is incremented.
The format length of 1 bit principally takes byte format, i.e. 8 bits. Only bit 0 is evaluated and bits 1 to 7 remain unregarded.

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

21

Inputs/Outputs
Inputs and outputs are process input signals which correspond to the control module applied. Their values are copies of the
hardware input/output channels.

They can be defined in the following operand formats:

Format Preset Identification
Bit
Byte
Word

Without
B
W

I/O addresses

In B-CON the 4 different input/output types are accessed by means of different address ranges as followed:

I/O Type System 2000 reference Address Range
Digital
Analog
Cnt/GW/etc
Derived

DI/DO
AI/AO
ZI/ZO
YI/YO

0000 - 1999
2000 - 3999
4000 - 5999
6000 - 7999

The actual useable addresses relates of cause to the actual physical installation (number and type of expansion modules etc.)
and the defined registers for communication with the master (YI/YO in B-CON S see below).

ZI/ZO variables are normally not available in BCON-S.
In order to write YIxx variable an instruction ST WOxx should be used.
In order to read YOxx variable an instruction LD WIxx should be used.

In order to make local Inputs available to the master, their number should be defined using “#DEFINE” directive.

 Example:

If the actual installation contains more inputs than specified only the lowest inputs will be transferred, e.g.: DI_CNT 1 will
transfer first 16 inputs (word 0) whereas following inputs will not be transferred.

The user cannot define Digital and Analog outputs to be available to the master as only the local application program in the
slave can control the outputs.
In case outputs should be controlled “directly” from the master the programmer must copy the data form YO (LD wi6000..) to
DO (ST wo0...).

 #DEFINE DI_CNT 1 // Master can read 1 DI Word
 #DEFINE AI_CNT 2 // Master can read 2 AI Words
 #DEFINE YI_CNT 16 // Master can read 16 YI Words
 #DEFINE YO_CNT 1 // Master can write 1 YO Word

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

22

B-CON S Database interface/register layout

B-CON M Database interface/register layout

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

23

B-CON registers are numbered in units of bytes whereas elsewhere in SYSTEM 2000 the general unit is words, example:

Memory variables (Markers)
Markers are storage cells in the internal memory of the control module applied with a memory address of fixed allocation.

Thus are available:

 512 byte markers or
 256 word markers or
 4096 bit markers.

The address allocation of the markers is organized by the operating system according to the following convention:

Marker byte Memory address
BM0
BM1
BM2
BM3
BM4
BM5
BM6
.
.
BM19
BM20
.
.
BM511
BM512
.
.
BM1024

�
�
��

�

Error/overflow
System indicator
Internal registers

Reserved for modem control
(B-CON RM, RS and RTU8).

Used by RTU8 modules

(can be used as bit, byte or words)

(can be used as bit, byte or words, RTU8
only)

Please observe that the first 2 memory bytes (BM0 and BM1) is reserved for error indication, warnings and special
facilities. They must therefore NOT be used as normal internal registers.

The operand formats can be selected in the same way as with inputs and outputs:

Format Preset Identification
Bit
Byte
Word

Without
B
W

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

24

Constants
Constants enable the presetting of fixed variables for operands.
They are also available in the usual operand formats:

Format Syntax Value range
Bit
Byte
Word

Without
B
W

log. „0“ or „1“
-128 0 +127
-32768 0 +32767

The corresponding value range always has to be adjusted to the further application (bit, byte or word operation).

Operand calls
The programming language uses 3 labels identities for operands calls, i.e. operand addresses:

 - operand format (bit, byte, word)
 - operand type (input, output, marker or constant)
 - operand counting number in the control system

Format Syntax
Bit
Byte
Word

Without
B
W

Data type Syntax
Input variable
Output variable
Marker (storage variable)
Constant

I
O or Q
M
C

As constants can take different data value types, they must be stated by an extended label. This label is placed after the
address C.

Value type Extended label
Binary value
Decimal value
Hexadecimal

Default boolean integer
Defaults
H

Examples:

The addresses of operands and operators can be written in small, capital or mixed characters in the source program.
For reasons of clearness using small or capital characters is recommended.

 c1 = binary constant of boolean value „1“
 c0 = binary constant of boolean value „0“
 bc127 = byte constant of decimal value +127
 bc-128 = byte constant of decimal value -128
 bch0A = byte constant of value 0Ahex (decimal 10)
 bch0 FF = byte constant of value FFhex (decimal 255)

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

25

Examples of correct generation of operand addresses:
The following examples show the generation of correct operand addresses:

Operand Address Explanation
1.2
I0.7
Bi3
Wi

o1.3
Q0.5v
Bo2

m1.2
BM3
wM31
Wm11

C1
c0
bc12
bch0a
wc-1234

input bit variable
input bit variable
input byte variable
input word variable

output bit variable
output bit variable
output byte variable

bit memory variable
byte memory variable
word memory variable
word memory variable

bit constant
bit constant
byte constant
byte constant
word constant

input 1, bit No 2
input 0, bit No 7
input 3
input 0

output 1,bit No 3
output 0, bit No 5
output 2

marker 1, bit No 2 (0701hex)
marker 3 (0703hex)
marker 31 (0731hex)
marker 11 (0711hex)

boolean value 1 (TRUE)
boolean value 0 (FALSE)
decimal value 12
hex value 0A (decimal 10)
decimal value -1234

Examples of false operand addresses:

Operand Address Explanation
1.2
I0.8
bm1.2
dBM3
C11
bc 128
wC123.4

Bit
Byte
Undefined
Bit
Byte
Word

Missing parameter for operand
No greater than 7
Format with bit marker
Marker "d"
Constant grater than 1
Constant greater than 127
Constant with bit marker

Generation of instructions
The generation of an instruction is carried out by selecting an operator followed by an operand as parameter.
The format of the selected operand defines the bit range in which the operation is to be executed. As you know all operand
types (inputs, outputs, markers and constants) can also take all formats (bit,byte or word).
 As everywhere, there are exceptions here,too, i.e. with some operators (commands) only certain operand formats are
permitted.

instructions for bit processing (1-bit length)
AND C0 /AND conn. ACC with bit constant, value log. 0
AND /AND conn. ACC with stack
AND I1.1 /AND conn. with input bit 1.1

Instructions for byte processing (8-bit length)
AND BM1 /AND conn. ACC with marker byte 1
AND B /AND conn. ACC with stack
AND BO2 /AND conn. with output byte 2

Generation of instructions for word processing (16-bit length)
AND WM3 /AND conn. ACC with marker word 3
AND W /AND conn. ACC with stack
AND WI1 /AND conn. with input word

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

26

List of commands
In the following list of commands all the commands (operators) are listed with a short description also mentioning the legal operand
formats. Derivative commands such as commands in subordinating brackets are not listed. Their handling is illustrated in the
corresponding detailed descriptions.

Command Format Description
LD
LDN

all
all

operand is loaded into ACC
operand is negated and loaded intoACC

ST
STN

all
all

ACC contents are loaded into operand
ACC contents are negated and loaded into op.

S
R

bit
bit

 operand is set „1“ storing
 operand is reset „0“ storing

AND/&
ANDN/&N

all
all

log. AND conjunction, result in ACC
OP2 negated, log.AND conjunction, result in ACC

OR
OR

all
all

log. OR conjunction, result in ACC
OP2 negated, log. OR conjunction, result in ACC

XOR
XORN

all
all

log. XOR conjunction, result in ACC
OP2 negated, log. XORN conjunction,result in ACC

JMP
JMPC
JMPCN

bit
bit
bit

unconditional jump to label
jump to label if condition log. 1
jump to label if condition log. 0

ADD
SUB
MUL
DIV

byte, word
byte, word
byte, word
byte, word

add operation, result in ACC
subtract operation, result in ACC
multiply operation, result in ACC
divide operation, result in ACC

ROR
ROL

byte, word
byte, word

rotate ACC contents from „High“ to „Low“ by n digits
rotate ACC contents from „Low“to „High“ by n digits

GT
GE
EQ
LE
LT

byte, word
byte, word
byte, word
byte, word
byte, word

compare signed to >, result: Boolean value in ACC
 compare signed to =>,result: Boolean value in ACC
 compare signed to =,result: Boolean value in ACC
compare signed to <=,result: Boolean value in ACC
compare signed to <,result: Boolean value in ACC

UGT
UGE
UEQ
ULE
ULT

byte, word
byte, word
byte, word
byte, word
byte, word

compare unsigned to >, result: Boolean value in ACC
compare unsigned to >=,result: Boolean value in AC
compare unsigned to =, result: Boolean value in ACC
compare unsigned to <=,result: Boolean value in ACC
compare unsigned to <,result: Boolean value in ACC

DUP
DUPN

all
all

duplicate ACC contents into stack
duplicate negated ACC contents into stack

NOP
EP

_
_

no operation (no command)
end of program

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

27

List of functions (macros)
In the following list of macros all the macro notations are listed with a short task description. Their operation is illustrated in the
corresponding detailed descriptions.

Macro Notation Short Description
RTR
STR

RS trigger, reset dominant
RS trigger, set dominant

CNTUP

counter up
counting range: 0..+.32767
max. frequency: 35 Hz

CNTDN counter down
counting range: +32767...0
max. frequency: 35 Hz

CNTUD counter up - down
counting range up: 0...+32767
counting range down: +32767...0
max. frequency: 35 Hz

UPLS

DNPLS

positive edge recognition,
creates single output pulse
negative edge recognition,
creates single output pulse

DTR data trigger,
synchronises input signal with system clock
max. frequency: 35 Hz

MEQ Masked equal

LIM Inlimit check

MOV
MVM

Move value
Move masked

COPYB
COPYW

Move multiple bytes
Move multiple words

Timers

Function
Notation

Short Description

TMRx universal timer function
x = Timer No
number: max. 4
byte argument 0 = timer as edge recognition
byte argument 1 = timer as on delay
byte argument 2 = timer as off delay

Special functions

Function
Notation

Short Description

LOG

LOG instruction (RTU8 only)

CODE Insert assembler code in program

FUNCTION/
SUBROUTINE

Subroutine

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

28

3.1.3 Compiler Errors

According to the PLC model and the control program developed for it, different errors are checked.
The essential error checks can be divided into:
 - syntax errors
 - semantic errors

Syntax errors
Syntax errors are errors which are produced in connection with failures to comply with syntax rules.
A typical instruction line looks like this:

[LABEL:] instruction code [Operand]

The brackets show that marker definitions (labels) and operand definitions are optional in an instruction.

Labels start in the first column position of a line.
The following syntax errors can occur in compiling in the case of false label definition:

 - Label doesn’t begin with a letter;
 - Label is longer than 8 symbols;
 - Label ended without „:“ (colon);
 - Duplicated label etc.

The instruction code (operator code) is used to define an operation in the program line. As instruction code any of the operators
stated in the stock of commands can be applied. During the compiler operation all the commands are checked for correct spelling.
Furthermore all the parameters of instructions and functions are checked.
The following syntax errors can be displayed:

 - Undefined variable;
 - No place PREFIX; (no identifier for variable type stated)
 - Too big input (output, memory) number; (input, output or marker have too big an allocation number, which exceeds the PLC
 control)
 - Too big BIT number;
 - No bit number for BIT type variable;
 - Incorrect BYTE (WORD) type variable with bit number:
 - BIT (Byte, word) constant of range etc. (bit, byte or word constant exceeds the value range).

Semantic errors
Semantic errors are errors that occur in connection with the false application of commands and operands.

During the compiler operation the following conditions are checked:

 -Is the command compatible with the operand type according to the table of commands?
 -Does the data type in the ACC correspond to the data type of the command currently compiled?
 -Does the data type in the stack correspond to the data type of the current command (if the operation needs a value from the
 stack)?
 - Is the stack full?
 - Is the stack empty (if the operation needs a value from the stack)?
 - Has the jump operation to the jump label been executed (if the data in the ACC and in the stack are of different data types)?
A comprehensive evaluation of the compiler operation is filed in the „LST FILE“ of the compiler. This file can be watched with the B-
CON Editor or with any other text editor.

Diagnostic of delay inequalities
The following statements refer to the adapter card that produces the connection between master and slave in the BITBUS system.
The check of delay inequalities is implemented. If a program runs correctly, the red LED only blinks for a short time for initializing a
processor test.

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

29

List of Error Reports (in alphabetic order)

Argument Expected
The instruction expects an argument

Conditional Jump Expected BIT Result
"JMPC" or " JMPCN" expects an operation result of BIT type in the ACC

Define Function Reqiures Two Operands
The second operand is missing in the function definition

Error Code
An unknown command was used

Example

 label: WEISSNICHTm33

Error Opening Debug File
Error Opening Listing File
Error Opening Temporary File

B-CON cannot create a file. The reason may be a defective harddisk or there is no more memory space on the harddisk.

Extra Parameters in xx
There are too many parameters in the instruction.

Example:

Function Name Expexted
In a function invitation the name of the function to be invited was not declared.

Function xx Is Incorrect Used In xx Module+
Some functions can only be applied to certain modules.

Incorrect Argument Type In ??? For Functions!!
In a function invitation there was a parameter of a false type.

Incompatible Constant Operation With xx Instruction
It was attempted to apply an illegal operation to a constant.

Incompatible Byte Operation With xx Instruction
It was attempted to apply an illegal operation to a byte type. variable.

Incompatible Word Operation With xx Instruction
It was attempted to apply an illegal operation to a word type variable.

Incorrect Argument In xx Operation
An argument of this type cannot be used in this operation.

 ld bm23 bm24 //illegal!

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

30

Incorrect Use Of) Operation
The opening bracket „(„ before this instruction is missing.

Incorrect Use Of xx Variable In xx Operation
Data of the type declared cannot be used in the operation declared.

Jump Requires Label
In a jump instruction no jump label was declared.

Jump To The Label From Line xx With Incorrect Stack Length
After the jump not all the data in the stack were processed.

Example:

Jump To The Label From Line xx With Incorrect Status
After a jump a stack operation was carried out that did not correspond to the data type in the stack.

Label Must Begin With Letter

Label Too Long
A jump label must begin with a letter and can have a maximum length of 8 symbols.

MACRO xx Is Incorrect Used In Module
Some macros can only be used with certain devices.

MACRO Requires More Parameters
The macro was invited with too few parameters.

No Closed Comment
Cf. „Unclosed Comment“

No Free Space In Memory
This error message appears when there is not enough memory space at the start of B-CON. Please check if programs resident on
your PC are active.

No Such Code
The code used does not exist.

No Variables In Stack
It was attempted to read variables from an empty stack.

Parameter Addressing In xx
The parameter list for a function or a macro is incorrect.

Stack Is Full
The stack depth is limited to 8 bytes. The error message appears when there is an attempt to store more than 8 bytes in the stack.

Stack Overflow
It was attempted to store more than 8 bytes in the stack.

Stack overflow In MACRO
During the execution of a macro it was attempted to store more in the stack than there is space for.

 ld bm23
 ld bm24
 ld bm25
 jmp error
 ld bm26
 ld bm27
error

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

31

Too Much Labels
This error message appears when more than 200 jump labels were used. The number of jump labels is limited to 200.

Type Of Operands
The operand in the instruction is incompatible with the operand in the stack.

Example:

Type Of The Value In The Stack Is Not The Same As The Type Of The Value In The Accumulator
The operands in the instruction are incopatible.

Example:

Unable To Open Include File xx Or No Such File
The file specified by an „INCLUDE“ instruction cannot be opened or does not exist.

Unclosed Comment
B-CON provides two comment closing symbols:

 1) //Comment
 2) {Comment}

When the compiler finds the symbols //, the rest of the line is treated as comment; with the pair of symbols {}, comment can be
inserted in any place in the program text.

Example:

Undefined Argument xx
The operand declared was not defined.

Unexpected Argument xx
In the stated line there is an instruction with too many operands.

Unexpected End Of File
The instruction „EP“ is missing or on reaching the „EP“ identifier there are still data in the stack or ACC.

Unexpected End Of Macro
The macro end identifier „EOMAC“ was found without a macro invitation having taken place.

Unexpected) Found
A closing bracket was found in an incorrect position.

Unrecognized BIT Number In ???
It was attempted to carry out an operation with a bit operand that is out of the legal range.

 ld bm23 //illegal!
 and wc33

 ld bm23 //illegal
 ld wm23
 and w

 ld bm22 //comment
 ld{comment}bm22 //no error message
 ld{comment bm22 //error message

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

32

Example:

Unrecognized Input IN I???
It was attempted to carry out an operation with a bit operand that is out of the legal range.

Example:

Unrecognized Memory IN M???
It was attempted to carry out an operation with a bit operand that is out of the legal range

Example:

Unrecognized Output In O???

Unreachable Code
„JMP“ was used without the declaration of a jump label.

Unknown Argumen
An undefined variable was used

Variable xx Is Greater Than The Maximal Value
The value of the variable declared exceeds the legal maximum value.

Variable xx Is Less Than The Minimal Value
The value of the variable declared remains below the legal minimum value.

ERROR - Opening Debug File xx
The file declared could not be found or opened.

ERROR - Compiler Table Limit
The memeory of the target module provides no more space for variables.

ERROR - Full Table Of Definitions
Per program a maximum of 1000 variable definitions are legal.

ERROR - Opening File xx.Dat
The file with information about the target device could not be opened. This file is created by B-CON when a faultless compiler run
has taken place.

ERROR - More Open Cycles Than Closed
At the end of the program there are still data in the stack or ACC.

ERROR - More Load Operations Than Store
At the end of the program there are still data in the stack or ACC.

 ld i0.0
 st o0.9 //This instruction cannot be carried out

 ld i10.3 //This instruction cannot be carried out.
 st o0.1

 ld m3990.7 //This instruction cannot be carried out.
 st o0.1

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

33

3.1.4 Runtime Error / Warning flags

BCON utilizes BM0 to give additional information to the user regarding overflow etc.

M0.0 Communication error (B-CON S)
 M0.0 is set if there is communication with a master.

During the execution of arithmetic operators if borrow, carry, or overflow occurs, bits M7, M6, M5, M4 of external memory BM0 are
set, and user can check them.

M0.4 Division by zero / overflow
 If dividing by zero memory bit M0.4 is set and the maximal value
 with a sign is returned as a result.

M0.5 Multiplication overflow
 If an overflow occurs memory bit M0.5 is set and the maximal value with a sign is returned as a result.

M0.6 Substruction overflow /borrow
 If an overflow /borrow occurs memory bit M0.6 is set and the maximal value with a sign is returned as a result.

M0.7 Addition overflow / carry
 If an overflow / carry occurs memory M0.7 is set and the maximal value with a sign is returned as a result.

BM1 is used to change value for controlling the System LED.

Status/run-time errors
The general System 2000 STATUS word is available to the user by the LD STATUS instruction.

Error checking is implemented in the execution time also.
If the application program runs correctly the System LED ON.
If it flashes then the application program doesn’t run. It means it has not been started or an error is detected and the program stops.

If an error is detected during program start or execution a bit H_STATUS.6 is set.
The byte L_STATUS indicates the type of the error:

 L_STATUS = 50H, means time-out elapsed without an event occured. This could appear if there is a serious error in t he
 system.
 L_STATUS = 60H, means scan time defined by a user is shorter than the execution time of a Scan_task.
 L_STATUS = 70H, means the application program is longer than scan time. If another error is detected in the system operation
 not
 connected with application task execution, the application is not stopped and error can be determined by reading
 of STATUS word, as defined in the System 2000 users manual.
 The application program is then responsible to handle these excepttions.

BM1 System indicator
0
1
2
3
4

ON (default)
OFF
Flash (symmetrical)
Flash (symmetrical)
Flash (asymmetrical)

>4 Not defined

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

34

3.1.5 Examples of B-CON programs

B-CON S program utilising symbolic names.

 /INTRODUCTION
 /This a program example for BCON-S.
 /The program is written for an island having 16DI, 16DO and 8AI.
 /Use F5 to obtain full screen!

 /IMPORTANT NOTE!!
 /Definitions and instructions must be placed separated from
 /the left margin (e.g. with 1 or 2 tabs).
 /Any information written far to the left are consider as a label!

 /DEFINITION OF REGISTERS FOR THE COMMUNICATION TO MASTER
 /A program should always start with definition of registers to be used in
 /the communication between master and slave and I/Os used
 /Registers used for communication with the BITBUS master has to be defined.
 /5 register banks are available DI/AI/ZI for direct transfer from input to
 /master and YI/YO for passing values between master and B-CON program
 /If outputs are to be controlled from the master YO must used and values
 /must be copied in the module from e.g. wi600 to wo0 using ld-st.

 /example:

 #define DI_CNT 1 /The number equals number of words
 #define AI_CNT 8
 #define ZI_CNT 0 /This line is not needed as default is 0
 #define YI_CNT 2
 #define YO_CNT 2

 /DEFINITION OF SYMBOLIC NAMES
 /It could be very convenient to use symbolic names for all physical
 /IO signals as it makes changes easier and it makes it easier to
 /overview the program.

 /example of definition (values used for examples below):

 #define up i0.0 /clock for upwards
 #define down i0.1 /clock for downwards
 #define cntval bo0 /counter value

 #define analogin wi2006 /analog input 3
 #define setpoint wi6000 /setpoint from master (YO 0)
 #define error wo6000 /error to master (YI 0)
 #define alarm o1.0 /digital output 0

 #define timerin i0.2 /start of timer (digital input 2)
 #define delayout o1.1 /output from timer (digital out 1)

 #define this i0.3 /digital input 3
 #define that i0.4 /digital input 4
 #define andout o1.2 /output from and (digital out 9)
 #define orout o1.3 /output from or (digital out 10)

 /also internal variables could be defined with symbolic names

 /example

 word delay
 byte john
 bit test

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

35

 /START OF PROGRAM
 /The program must start with the label “main”

 main:

 /LOAD-STORE
 ld i0.0
 st test

 ld test
 st o1.4

 /AND
 ld this
 and that
 st andout

 /OR
 ld this
 or that
 st orout

 /UP DOWN COUNTER
 cntud up,down,c0,c0,wm2,wc0,m4.0,m4.1
 ld bm2
 st cntval

 ld wm2
 st wo6002 /transfer counter value to master

 /OUTPUT FROM MASTER
 ld i6002.0 /3 lowest bits to output 13-15
 st o1.5
 ld i6002.1
 st o1.6
 ld i6002.2
 st o1.7

 /ANALOG COMPARATOR
 ld analogin
 gt setpoint /derived from the master via YI
 st alarm

 /DIFFERENCE BETWEEN INPUT AND SETPOINT
 ld analogin
 sub setpoint
 st error /transferred to the master

 /TIMER (ON DELAY)
 tmr1 bc1,timerin,delayout,wc100 /wc100=100x10ms

 /END OF PROGRAM
 /The program must always be terminated with “ep”

 ep

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

36

B-CON M program Example using direct I/O addressing

/This is a demo program for master and message display
/The master (M) is UCB-16DIO + UCL-08AI
/The display (DIS) is UCT-42 (variable digits 0,1,2,3 used)

main:
 ld m.wi0 /read digital input
 st dis.wo4000 /select text no.

 ld m.wi2006 /read analog input
 st dis.wo4002 /display analog

 ld dis.wi4000 /read keypad
 st m.wo0 /write digital out

 ep

B-CON M program example using symbolic names (define)

 /This is a demo program for master and message display
 /The master (M) is UCB-16DIO + UCL-08AI
 /The display (DIS) is UCT-42 (variable digits 0,1,2,3 used)

 #define digin m.wi0
 #define text dis.wo4000
 #define analog m.wi2006
 #define var1 dis.wo4002
 #define key dis.wi4000
 #define digout m.wo0

 main:
 ld digin /read digital input
 st text /select text no.

 ld analog /read analog input
 st var1 /display analog

 ld key /read keypad
 st digout /write digital out

 ep

3.1

 B-CONW
Programming

Description of the language

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

37

3.1.6 List of sample programs
The CD-Rom provides the sample programs listed below in the sub-directory EXAMPLES and in further subregisters as source
program file *.PGM.

The programs refer to the application and handling of a command, a function or a smaller task. The name of the program file is self-
explanatory and as a rule points to the application of the command, the function or the problem.

 Sample programs in subdirectory "EXAMPLES"
In subdirectory „EXAMPLES“ the sample programs are listed in alphabetical order. The application examples refer to the stock of
basic commands such as logical conjunction, fixed-point arithmetic, compare and jump commands.

Program Name

 demoror pgm
 grenzen pgm
 p_add pgm
 p_addpp pgm
 p_and pgm
 p_andn pgm
 p_andnpp pgm
 p_andpp pgm
 p_div pgm
 p_divpp pgm
 p_divpp1 pgm
 p_dup pgm
 p_dupn pgm
 p_dupnpp pgm
 p_duppp pgm
 p_eq pgm
 p_eqpp pgm
 p_ge pgm
 p_gepp pgm
 p_gt pgm
 p_gtpp pgm
 p_jmp pgm
 p_jmpc pgm
 p_jmpcn pgm
 p_ld pgm
 p_ldn pgm
 p_le pgm
 p_lepp pgm
 p_lt pgm
 p_ltpp pgm
 p_mul pgm
 p_mulpp pgm
 p_or pgm
 p_orn pgm
 p_ornpp pgm

 p_orpp pgm
 p_r pgm
 p_resdom pgm
 p_rol pgm
 p_ror pgm
 p_s pgm
 p_setdom pgm
 p_st pgm
 p_stn pgm
 p_sub pgm
 p_subpp pgm
 p_ueq pgm
 p_uegpp pgm
 p_uge pgm
 p_ugepp pgm
 p_ugt pgm
 p_ugtpp pgm
 p_ule pgm
 p_ulepp pgm
 p_ult pgm
 p_ultpp pgm
 p_xor pgm
 p_xorn pgm
 p_xornpp pgm
 p_xorpp pgm
 p_cntdn pgm
 p_cntud pgm
 p_cntup pgm
 p_dnpls pgm
 p_dtr pgm
 p_rtr pgm
 p_str pgm
 p_upls pgm

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

38

3.2 Basic Logical Instructions

3.2.1 Load Instructions

LD Load value.
This load instruction puts the operand, which is stated in the command, into the ACC.
The value that was stored in the ACC before, is automatically pushed down into the stack. By this process, the depth of the stack is
decremented.

The load instruction (operator) works with all data formats and data types.

Declaration examples:

LD BI0 /load input byte No 0
LD I1.7 /load input bit 1.7

Programming example:

LDN Load value negated (load value inverted).
This load instruction negates the operand stated as parameter in the command and loads it into the ACC.
The value that was stored in the ACC before is automatically pushed down into the stack.

The LDN instruction (operator) works with all data formats and data types provided they are not constants. Constants cannot be
negated.

Declaration examples:

Programming example:

/P_LD.PGM
 /Example: data exchange instruction LD
 /LD = load operand into ACC
 /ST = load contents of ACC into operand

 ld i0.1 /load input bit into ACC
 st o0.7 /store contents of ACC in output bit
 ep /end of programme

 LDN BI0 /load input byte No 0 negated
 LDN I1.7 /load input bit 1.7 negated

 /P_LDN.PGM
 /example: data exchange instruction LDN
 /LDN = load operand negated into ACC
 /ST = load contents of ACC into operand

 ldn i0.1 /load input bit negated into ACC
 st o0.7 /store contents of ACC in output bit
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

39

3.2.2 Store Instructions

ST Store value.
This storage instruction stores the value resident in the ACC into the operand stated as parameter in the instruction.
After execution of the command the previous contents of the ACC are lost and the value stored in the stack last is pushed down
into the ACC. By this process the depth of the stack is incremented.

The ST instruction works with all data formats and with data types; outputs and markers, not with inputs.

Declaration examples:

Program example:

STN Store value negated.
This storage instruction negates the value resident in the stack and stores it in the operand stated in the command as parameter.
After the execution of the command the previous contents of the ACC is lost and the value stored in the stack last is pushed down
into the ACC. By this process the depth of the stack is incremented.

The STN instruction works with all data formats and with data types, outputs, and markers - not with inputs.

Declaration examples:

Programming example:

 ST BO0 /store Acc in output byte No 0
 ST O1.7 /store Acc in output bit 1.7

 /P_ST.PGM
 /example: data exchange instruction ST
 /LD = load operand into ACC
 /ST = load contents of ACC into operand

 ld bi0 /load input byte into ACC
 st bo0 /store contents of ACC in output byte
 ep /end of program

 STN BO0 /store ACC negated in output byte No 0
 STN O1.7 /store ACC negated in output bit 1.7

 /P_STN.PGM
 /example: data exchange instruction STN
 /LD = load operand into ACC
 /STN = load contents of ACC negated into operand

 ld bi0 /load input byte into ACC
 stn bo0 /store contents of ACC negated in output
 byte
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

40

3.2.3 Set and Reset Instructions

With this kind of commands, operands in bit format can be set or reset storing.

S Set instruction.
The S instruction sets the operand, stated in the operand, as parameter to the Boolean value 1 (TRUE).

The operand is set storing to 1 when the contents of the ACC have the value 1 through a previous operation. In case the contents
of the ACC have the value 0 at this time, the operand declared is not changed.
After the execution of the command, the contents of the ACC are lost and a new value is automatically pushed down into the ACC.
By this process the stack address is incremented.

The S instruction can only be used in bit format. As operand types only marker and output variables can be applied. Byte and word
formats are not permitted!

Declaration examples:

Programming example:

R Reset instruction.
The R instruction sets the operand declared in the command as parameter to the Boolean value 0 (FALSE).

The operand is set storing to 0, when the contents of the ACC have the value 1, through a previous operation. In case the contents
of the ACC have the value 0 at this time, the operand declared is not changed.
After the execution of the command the contents of the ACC are lost and a new value is automatically pushed down from the stack
into the ACC. By this process the stack address is incremented.

The R instruction can only be used in bit format. AS operand types only marker and output variables can be applied. Byte and word
formats are not permitted!

Declaration examples:

Programming example:

 S M10.1 et marker bit 10.1 to log.1
 o0.5 t output bit 0,5 to log.1

 P_S.PGM
 example: S = set storing

 ld c1 /load bit constant value 1 into ACC
 s o0.1 /set output variable to log.1
 ep /end of program

 M10.1 /reset marker bit 10.1 to log.0
 O0.5 /reset output bit 0.5 to log.0

 /P_R.PGM
 /example: R = reset storing

 ld c1 /load bit constant value 1 into ACC
 r o0.1 /reset output variable to log.0
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

41

3.2.4. Dominant Setting and Resetting

An application of the combination of the R and S operator frequently used in control technique is the RS flip-flop.

This principle consists in both operators accessing a common target variable.
The sequence of commands decides whether the setting (S) or resetting (RS) is being dominant.
In the co-operation of these two operators the one that is the last in the sequence of the instruction is always dominant.

In this instruction of the target, variables are only possible in bit format and with marker and output variables.

RS Flip-Flop, dominant setting.
In the table of functions the correlation’s between operators S an R in their relation to the common output variables are illustrated.
Dominant setting is the state of SET and RESET input having log.1 signal and the output being set to log.1.

Table of functions:

S
(OP1)

R
(OP2)

Output
(RESULT)

0 0 Previous history
0 1 0
1 0 1
1 1 1 (dominant position)

Function chart:

I0.2

I0.1

(RESULT)

(OP2)

(OP1)

R

S

Q
O0.1

Programming example:

 /P_SETDOM.PGM
 /example: S dominant = set target variable dominant

 ld i0.2 /OP2: load input variable into ACC
 r o0.1 /RESULT: reset target variable
 ld i0.1 /OP1: load input variable
 s o0.1 /RESULT: set target variable
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

42

RS Flip-Flop, dominant resetting.
In the table of functions the correlation’s between operators S and R in their relation to the common output variable are illustrated.
Dominant resetting is the state of SET and RESET input having the log. 1 signal and the output being reset to log.0.

Table of functions:

S
(OP1)

R
(OP2)

Output
(RESULT)

0 0 Previous history
0 1 0
1 0 1
1 1 0 (dominant position)

Function chart:

I0.2

I0.1

(RESULT)

(OP2)

(OP1)

R

S

Q
O0.1

Programming example:

 /P_RESDOM.PGM
 /example: R dominant = reset target variable dominant

 ld i0.1 /OP1: load input variable
 s o0.1 RESULT: set target variable
 rd i0.2 load input variable into ACC
 r o0.1 /RESULT: reset target variable
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

43

3.2.5 Logical AND Instructions

Logical conjunctions serve the purpose of realising combinatorial circuits or networks. They follow the rules of Boolean algebra and
are an important means in digital technique.
The AND conjunction creates a result of two binary variables, which can be illustrated by a series connection of contacts.

AND Logical AND instruction.
The AND command (operator) actuates a bitwise logical AND conjunction between operand 1 (OP1) and operand 2 (OP2).

OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. The result of the
conjunction (RESULT) is available in the ACC. Thereby the former contents of the ACC are overwritten. The contents and depth of
the stack are not changed.

When an AND instruction is to be carried out without the declaration of operands, it is understood that OP1 is in the stack and OP2
was loaded into the ACC. Again the RESULT is available in the ACC the former contents of the ACC being overwritten. In this case
the stack is incremented.

The AND instruction can be carried out with all data formats and data types.

Declaration examples:

In the following table of functions the relations in the bit version between OP1 and OP2 to the result variable (RESULT) are
illustrated.

Table of AND functions:

(OP1) (OP2) RESULT
0 0 0
0 1 0
1 0 0
1 1 1

Function chart:

I0.2

I0.1

(RESULT) O0.0

(OP2)

(OP1) &

Programming example:

 AND I0.1 /AND conjunction ACC with input byte 0.1
 AND BCHFA /AND conjunction ACC with byte constant FAh

 /P_AND.PGM
 /example: AND conjunction in bit format
 ld i0.1 /OP1: load input
 and i0.2 /OP2: AND conjunction OP1 with OP2
 s o0.0 /RESULT: store in output
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

44

ANDN Logical AND with negation.
The ANDN instruction actuates a bitwise logical AND conjunction between operand 1 (OP1) and operand 2 (OP2), which was
negated.

OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process the former contents of the ACC are overwritten. Contents and depth of
the stack are unchanged in this case.

When an AND instruction has to be executed without the declaration of operands, it is understood that OP1 is in the stack and OP2
was loaded into the ACC. Again the result is available in the ACC as RESULT, the former contents of the ACC having been
overwritten. In this case the stack address is incremented.

The ANDN instruction can be carried out with all data formats and data types. However, OP2 cannot be a constant.

Note: Constants cannot be inverted.

Declaration examples:

In the following table of functions the relations in the bit version of OP1 and inverted OP2 to result variable RESULT are illustrated.

Table of ANDN functions:

(OP1) (OP2) OP2
inverse

RESULT

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

Function chart:

I0.1

I0.2

(RESULT)

&(OP1)

(OP2)

O0.1

Programming example:

 ANDN I0.1 /AND conjunction ACC with negated input bit
 0.1
 ANDN B00 /AND conjunction ACC with negated output
 byte 0

 /P_ANDN.PGM
 /example: ANDN = AND conjunction with previous
 /negation of OP2

 ld i0.1 /OP1: load input bit
 andn i0.2 /OP2: negation of operand 2 and AND
 conjunction with OP1
 st o0.1 /RESULT: store in output bit
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

45

AND(...) Logical AND with nesting.
The AND instruction with command nesting in brackets actuates a bitwise logical AND conjunction between operand 1 (OP1) and
operand 2 (OP2).
OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process, the former ACC contents are overwritten.
The contents and depth of the stack are unchanged after the execution of the instruction. When, however, an operand in the
bracket is a value of the stack, the stack depth is incremented.

Declaration example:

The sequence in the execution of the command is this: First the operations in the bracket are executed. They create OP2.

Example, execution of the AND(...) instruction:

 Program listing Sequence of execution Coments

 LD I0.0
 AND(I0.1
 OR I0.2
)AND I0.O

 LD I0.0
 LD I0.1
 OR I0.2
 /OP1

/OP1
/(result represent
/(OP2

The AND(...) instruction can be carried out with all data formats and data types.

The compiler permits up to sixfold nesting of such combinations of commands provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) is illustrated.

Table of AND(...) functions:

OP1 OP2
(...)

RESULT

0 0 0
0 1 0
1 0 0
1 1 1

Function chart:

I0.1

I0.2

(RESULT)

&(OP1)

(OP2)

O0.1

 AND(i0.2 /AND conjunction of ACC with the temporary
 OR i0.3 /result of the bracket
)

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

46

Programming example:

ANDN(...) Logical AND with negation and nesting.
The ANDN instruction with command nesting in brackets actuates a bitwise logical AND conjunction between operand 1 (OP1) and
operand 2 (OP2), which is the temporary result of the bracket previously negated.
OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. This parameter is
created by the command nesting in the bracket. The conjunction result is available in the ACC as RESULT. By this process the
former ACC contents are overwritten.
The stack contents and depth are unchanged after the execution of the instruction. When, however, an operand in the bracket is a
value of the stack, the stack depth is incremented.

Declaration example:

The sequence in the execution of the instruction is this: First the operations declared in the bracket are executed. They create OP2.

Example, execution of the ANDN(...) instruction:

 Program listing Sequence of execution Coments

 LD I0.0
 ANDN(I0.1
 OR I0.2
)ANDN I0.O

 LD I0.0
 LD I0.1
 OR I0.2

/OP1
/(result represent
/(OP2
/OP1

The ANDN(...) instruction can be carried out with all data formats and data types.

The compiler permits up to sixfold nesting of such combinations of commands. Maximum stack depth is 8 bytes.

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) are illustrated.

Table of ANDN(...) functions:

(OP1) (OP2)
(...)

OP2
negated

RESULT

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

Function chart:

 /P_ANDPP.PGM
 /example: AND(...) = AND conjunction with succeeding
 /commands in brackets
 ld i0.0 /OP1: load input bit
 and(i.0.1 /OP21: OR conjunction with all bracketed
 or i0.3 /OP23: temporary operand OP2
) /AND conjunction of OP1 and OP2
 st o0.0 /RESULT: store in output bit
 ep /end of program

 ANDN(i0.2 /AND conjunction ACC with negated
 OR i0.3 /temporary result of the bracket
)

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

47

(OP2)i0.1

i0.2

i0.3

(OP21)

(OP22)

(OP23)

>=1

i0.0 (OP1)

(RESULT) o0.0

&

Programming example:

 /P_ANDPP.PGM
 /example: ANDN(...) = AND conjunction with succeeding
 /commands in brackets and with OP1 negation

 ld i0.0 /OP1: load input bit
 andn(i0.1 /OP21: OR conjunction of all the bracketed
 or i.0.2 /OP22: operands OP21...23 to
 or i0.3 /OP23: temporary operand OP2
) /OP1 negation and AND conjunction with OP2
 st o0.0 /RESULT: store in ooutput bit
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

48

3.2.6 Logical OR Instructions
The OR conjunction, also called disjunction, creates a result between two binary variables which can be illustrated by the shunting
of contacts.

OR Logical OR instruction.
The OR instruction (operator) actuates a bitwise logical OR conjunction between operand 1 (OP1) and operand 2 (OP2).

OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process the former ACC contents are overwritten. In this case the stack contents
and depth are unchanged.
When an OR instruction is to be executed without the declaration of operands, it is understood that OP1 is in the stack and OP2
has been loaded into the ACC. Again the result is available in the ACC as RESULT the former contents of the ACC having been
overwritten. In this case the stack is incremented.

The OR instruction can be carried out with all data formats and data types.

Declaration examples:

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) are illustrated.

Table of OR functions:

OP1 OP2
(...)

RESULT

0 0 0
0 1 1
1 0 1
1 1 1

Function chart:

I0.2

(RESULT) o0.0

(OP2)

>=1I0.1 (OP1)

Programming example:

 OR I0.1 /OR conjunction ACC with input bit 0.1
 OR BCHFA /OR conjunction ACC with byte constant FAh

 /P_OR.PGM
 /example: OR conjunction in bit format

 ld i0.1 /OP1: load input
 or i0.2 /OP2: OR conjunction OP1 with OP2
 st o0.0 /RESULT: store in output
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

49

ORN Logical OR with negation.
The ORN instruction (operator) actuates a bitwise logical OR conjunction between operand 1 (OP1) and operand 2 (OP2), which
was previously negated.
OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process the former contents of the ACC are overwritten. In this case the stack
contents and depth are unchanged.

When an ORN instruction is to be executed without the declaration of operands, it is understood that OP1 is in the stack and OP2
was loaded into the ACC. Again the result is available in the ACC as RESULT the former contents of the ACC having been
overwritten. In this case the stack address is incremented.

The ORN instruction can be carried out with all data formats and data types. However, OP2 cannot be a constant.

Note: Constants cannot be inverted!

Declaration examples:

In the following table of functions the relations in the bit version of OP1 and negated OP2 to the result variable (RESULT) are
illustrated.

Table of ORN functions:

(OP1) (OP2)

OP2
inverse

RESULT

0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

Function chart:

I0.1

I0.2

(RESULT)

(OP1)

(OP2)

>=1

O0.1

Programming example:

The ORN instruction with command nesting in brackets actuates a bitwise logical OR conjunction between operand 1 (OP1) and
the previously negated temporary result of the bracket as operand 2 (OP2).
OP1 must be previously loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process the former ACC contents are overwritten.

 ORN I0.1 /OR conjunction ACC with negated input bit 0.1
 ORN B00 /OR conjunction ACC with negated output byte 0

 /P_ORN.PGM
 /example: ORN conjunction with previous negation of OP2

 ld i0.1 /OP1: load input bit
 orn i0.2 /OP2: negation and OR conjunction with
OP1
 st o0.0 /RESULT: store in output bit
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

50

The stack contents and depth are unchanged after the execution of the command. When, however, an operand in the bracket is a
value of the stack, the stack depth is incremented.

Declaration example:

The sequence in the execution of this instruction is this: First the operations declared in the bracket are executed. They create OP2.

Example, execution of the ORN(...) instruction:

 Program listing Sequence of execution Coments

 LD I0.0
 ORN(I0.1
 AND I0.2
)

 LD I0.0
 LD I0.1
 AND I0.2
 ORN I0.0

/OP1
/(result represent
/(OP2
/OP1

The ORN(...) instruction can be carried out with all data formats and data types.

The compiler permits up to sixfold nesting of such combinations of commands provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) are illustrated.

Table of ORN(...) functions:

OP1 OP2
(...)

OP2
negated

RESULT

0 1 0 0
0 0 1 1
1 1 0 1
1 0 1 1

Function chart:

(OP2)i0.1

i0.2

i0.3

(OP21)

(OP22)

(OP23)

>=1

i0.0 (OP1)

(RESULT) o0.0

&

 ORN(i0.2 /OR conjuction ACC with temporary
 AND i0.3 /result of the bracket
)

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

51

3.2.7 Logical XOR Instructions

The XOR conjunction also called „exclusive OR“ is a combinatorial switching circuit between AND, OR, and NOR members of two
binary variables. In the classic case it represents non-equivalence. Through the negation of one of the two inputs equivalence is
created.

XOR Logical XOR (non-equivalence).
The XOR instruction (operator) actuates a logical XOR conjunction between operand 1 (OP1) and operand 2 (OP2).
OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process the former ACC contents are overwritten. In this case the stack contents
and depth are unchanged.

When an XOR instruction without operands is to be executed, it is understood that OP1 is in the stack and OP2 was loaded into the
ACC. Again the result is available in the ACC as RESULT the former ACC contents having been overwritten. In this case the stack
address is incremented.

The XOR instruction can be carried out with all data formats and data types.

Declaration examples:

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) is illustrated:

Table of XOR functions (non-equivalence):

OP1 OP2 RESULT
0 0 0
0 1 1
1 0 1
1 1 0

Function chart (non-equivalence):

I0.1

I0.2

(RESULT)

(OP1)

(OP2)

>=1

O0.1

Programming example:

 XOR I0.1 /XOR conjunction ACC with input bit 0.1
 XOR BCHFA /XOR conjunction ACC with byte constant FAh

 /P_XOR.PGM
 /example: XOR conjunction (non-equivalence)

 ld i0.1 /OP1:load input bit
 xor i0.2 /OP2: XOR conjunction with OP1
 st o0.0 /RESULT: store in output bit
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

52

Programming example:

XORN Logical XOR with negation (equivalence).
The XORN instruction (operator) actuates a bitwise logical XOR conjunction between operand 1 (OP1) and previously negated
operand 2 (OP2).
OP1 must be previously loaded into the ACC and OP2 is activated by the parameter following in the instruction. The conjunction
result is available in the ACC as RESULT. By this process the former contents of the ACC are overwritten. In this case the stack
contents and depth are unchanged.
When an XORN instruction is to be executed without the declaration of an operand, it is understood that OP1 is in the stack and
OP2 was loaded into the ACC. Again the result is available in the ACC as RESULT the former contents of the ACC having been
overwritten. In this case the stack address is incremented.

The XORN instruction can be carried out with all data formats and data types. However, OP2 cannot be a constant.

Note: Constants cannot be inverted!

Declaration example:

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) are illustrated.

Table of XORN functions (equivalence):

OP1 OP2 OP2
inverse

RESULT

0 0 1 1
0 1 0 0
1 0 1 0
1 1 0 1

Function chart (equivalence):

I0.1

I0.2

(RESULT)

(OP1)

(OP2)

>=1

O0.1

 /P_ORNPP.PGM
 /example: ORN(..) = OR conjunction with succeeding
 /commands in brackets and negation of OP2

 ld i0.0 /OP1: load input bit
 orn(i0.1 /OP21: AND conjunction of all bracketed
 and i0.2 /OP22: operands OP21...OP23 to
 and i0.3 /OP23: temporary operand OP2
) /OP2 negation and OR conjunction with OP1
 st o0.0 /RESULT: store in output bit
 ep /end of program

 XORN 10.1 /XORN conjunction ACC with input bit 0.1
 XORN BCHFA /XORN conjunction ACC with byte constant FAh

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

53

Programming example:

XOR(...) Logical XOR with nesting.
The XOR instruction with command nesting in brackets actuates a bitwise logical XOR conjunction between operand 1 (OP1) and
operand 2 (OP2).
OP1 is the current ACC contents. OP2 is created of the temporary result of the instructions in brackets following the command as
parameters. The conjunction result is available in the ACC as RESULT. By this process the former ACC contents are overwritten.
The stack contents and depth are unchanged. When, however, an operand in the bracket is a value of the stack, the stack depth is
incremented.

Declaration example:

The sequence of the execution of the instruction is this: First the operations declared in the bracket are executed. They create OP2.

Example, execution of the XOR(...) instruction:

 Program listing Sequence of execution Coments

 LD I0.0
 XOR(I0.1
 AND I0.2
)

 LD I0.0
 LD I0.1
 AND I0.2
 OR I0.0

/OP1
/(result represent
/(OP2
/OP1

The XOR(..) instruction can be carried out with all data formats and data types.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) are illustrated.

Table of XOR(...) functions:

OP1 OP2
(...)

RESULT

0 0 0
0 1 1
1 0 1
1 1 0

 /P_XORN.PGM
 /example: XORN conjunction (equivalence)

 ld i0.1 /OP1: load input bit
 xorn i0.2 /OP2: XORN conjunction with OP1
 st o0.0 /RESULT: store in output bit
 ep /end of program

 XOR(i0.2 /XOR conjunction ACC with the temporary
 AND i0.3 /result of the bracket
)

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

54

Function chart:

(OP2)i0.1

i0.2

i0.3

(OP21)

(OP22)

(OP23)

>=1

i0.0 (OP1)

(RESULT) o0.0

&

Programming example:

XORN(...) Logical XOR with negation and nesting.
The XORN instruction with command nesting in brackets actuates a bitwise logical XOR conjunction between operand 1 (OP1) and
the previously negated temporary result of the bracket as operand 2 (OP2).
OP1 must previously be loaded into the ACC and OP2 is activated by the parameter following in the instruction. It is created by the
command nesting in the bracket. The conjunction result is available in the ACC as RESULT. By this process the former ACC
contents are overwritten.
The stack contents and depth are unchanged after the execution of the command. When, however, an operand in the bracket is a
value of the stack, the stack depth is incremented.

The sequence in the execution of the instruction is this: First the operations declared in the bracket are executed. They create OP2.

Example, execution of the XORN(...) instruction:

 Program listing Sequence of execution Coments

 LD I0.0
 XORN(I0.1
 AND I0.2
)

 LD I0.0
 LD I0.1
 AND I0.2
 XORN I0.0

/OP1
/(result represent
/(OP2
/OP1

The XORN(...) instruction can be carried out with all data formats and data types.
The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

In the following table of functions the relations in the bit version of OP1 and OP2 to the result variable (RESULT) are illustrated.

 /P_XORPP.PGM
 /example: XOR(...) = XOR conjunction with succeeding
 /commands in brackets
 /non-equivalence function (extended)

 ld i=.0 /OP1: load input bit
 xor(i0.1 /OP21: AND conjunction of all bracketed
 and i0.2 /OP22: operands OP21...OP23 to the
 and i0.3 /OP23: temporary operand OP2
) /XOR conjunction OP1 with OP2
 st o0.0 /RESULT: store in output bit
 ep /end of program

3.2

 B-CONW
Programming

Basic Logical Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

55

Table of XORN(...) functions:

OP1 OP2
(...)

OP2
negated

RESULT

0 1 0 0
0 0 1 1
1 1 0 1
1 0 1 0

Function chart:

(OP2)i0.1

i0.2

i0.3

(OP21)

(OP22)

(OP23)

>=1

i0.0 (OP1)

(RESULT) o0.0

&

Programming example:

 /P_XORNPP.PGM
 /example: XORN(...) = XOR conjunction with succeeding
 /commands in brackets and negation of OP1,
 /equivalence function (extended)

 ld i0.0 /OP1: load input bit
 xorn(i0.1 /OP21: AND conjunction of all bracketed
 and i0.2 /OP22: operands OP21...OP23 to
 and i0.3 /OP23: temporary operand OP2
) /OP2 negated and XOR conjunction OP1 with OP2
 st o0.0 /RESULT: store in output bit
 ep /end of program

3.3

 B-CONW
Programming

Shift Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

56

3.3 SHIFT Instructions

ROR Rotate ACC contents to the right.
The ROR instruction (rotate right) actuates the rotation of the value or bit pattern respectively in the ACC to the right.

Only byte and word operands are permitted.

Declaration example (byte format):

 LD bch80 /load bit pattern 80h into ACC
 ROR bch01 /rotate ACC contents to the right by 1 bit

The operation actuates the rotation of the current ACC contents to the right by the parameter value declared in the instruction. Thus
the parameter decides on the number of bit digits to be moved.

The command „rotate right“ means that the ACC contents (bit pattern) are moved from higher-ranking to lower-ranking bit digits by
the number n. According to arithmetic logic the rotation to the right has the effect of a divide operation by the following rule:

 <ACC> by n digits = division by 2n .

Programming example:

ROL Rotate contents of ACC to the left.
The ROL instruction (rotate left) actuates the rotation of the value or bit pattern respectively in the ACC to the left.

Only byte and word operations are permitted.

Declaration example (byte format):

The execution of the instruction has the effect that the current ACC contents is rotated (moved) to the left by the parameter value following the command.
Thus the parameter decides on the number of bit digits to be rotated.
The instruction „rotate left“ means that the ACC contents (bit pattern) are moved from lower to higher bit digits by the number n.
According to arithmetic logic the rotation to the left has the effect of multiply operation by the following rule:

 <ACC> by n digits = multiplication by 2n .

 /P_ROR:PGM
 /example: ROR = rotate right (ACC contents)
 /the loaded bit combination is rotated from the higher to the
 / lower position by the number of bit digits declared in the
 / instruction.

 ld m1.7 /switch for rotation
 jmpc zyklus
 ld c1
 st m1.7 /switch for start condition
 ld bch80 /bit pattern for start condition
 st bm10
 zyklus:
 ld bm10
 ror bc1 /rotate right by 1 (n) bit digits
 st bm10
 ld bm10
 st bo0 /readout bit pattern
 ep

 LD bch01 /load bit pattern 01h into the ACC
 ROL bch01 /rotate ACC contents to the left by one bit digit

3.3

 B-CONW
Programming

Shift Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

57

Programming example:

SHL Shift Left
The operator shifts left the operand, zero is inserted in the empty spaces.

 It works only with BYTE, and WORD operand types.

The first operand is accumulator contents (the value in the accumulator is shift), the second one is given in the instruction (the
number of shifts to be done), and the result is left in the accumulator.
The stack contents and depth is not changed in the common case.

Example:
 // BM33=2h, Acc = 91h
 SHL bm33 // Acc = 44h (68dec)

Example:
 // BM33=8h, Acc = 12h
 SHL wm33 // Acc = 1200h

SHR Shift Right
The operator shifts right the operand, zero is inserted in the empty spaces.

 It works only with BYTE, and WORD operand types.

The first operand is accumulator contents (the value in the accumulator is shift), the second one is given in the instruction
(the number of shifts to be done), and the result is left in the accumulator.
The stack contents and depth is not changed in the common case.

Example:
 // BM33=2h, Acc = 91h
 SHR BMm33 // Acc = 24h (36dec)

Example:
 // BM33=8h, Acc = 1255h
 SHR wm33 //Acc=12h

 /P_ROL.PGM
 /example: ROL = rotate left (ACC contents)
 /The loaded bit combination is rotated from a lower
 /to a higher position by the number of bit digits
 /declared in the instruction

 ld m1.7 /switch for rotation
 jmpc zyklus
 ld c1
 st m1.7 /switch for start condition
 ld bch0.1 /bit pattern for start condition
 st bm10
 zyklus:
 ld bm10
 rol bc1 /rotate left by 1 (n) bit digit
 st bm10
 ld bm10
 st bo0 /readout bit pattern
 ep

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

58

3.4 Arithmetic Instructions
Arithmetic instructions enable the execution of mathematic operations of two fixed-point numbers.

Fixed-point numbers are signed integer numbers. In the binary system plus and minus signs of numbers can only be represented
by 0 or 1. For this reason the amount of numbers available in a digital computer had to be divided into two halves.

Numbers belonging to the upper half of the total amount of numbers with 0 as MSB are allocated to positive numbers.
Numbers belonging to the lower half of the total amount of numbers with 1as MSB are allocated to negative numbers.

For the provided facility of the different application of variable formats the following considerations always have to be regarded:

 Format Negative Number Positive Number Unsigned Number
 8-bit

 16-bit

 -128.............-1
 80h...FFh

 -32768.........-1
 8000h....FFFFh

 0+127
 0h..........7Fh

 0...........+32767
 0h.......7FFFh

 0.....255
 0h....FFh

 0......65535
 0h...FFFFh

3.4.1 ADD Instructions

ADD
The ADD instruction adds two signed fixed-point numbers. These values are represented in the instruction by operands.

Operand permitted: Byte and word

The first operand is the ACC contents and the second operand is the parameter following the command. The result is available in
the ACC as RESULT. By this process the former ACC contents are overwritten. The stack contents and depth are unchanged.

When an ADD instruction is to be executed without the declaration of operands, it is understood that OP1 was loaded into the ACC
and OP2 is in the stack. Again the result is available in the ACC as RESULT the former ACC contents having been overwritten. In
this case the stack address is incremented.

According to the selection of the operand format (byte or word), an overflow bit in the formation of the result, M0.7 = 1, is created by
the operating system if the range of values is exceeded. This overflow bit can be queried after the execution of the operation:

 Byte format: value >+127 M0.7=1
 Word format: value >+32767 M0.7=1

When an overflow bit occurs, the result must be corrected by appropriate programming steps.

Declaration example in byte format:

 LD BC100 /OP1: +100
 ADD BC20 /OP2: + 20
 ST BO /RESULT: +120

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

59

Programming example:
Creation of bit marker M0.7 and indication of result correction

ADD(...) ADD with nesting.
The ADD instruction with command nesting in brackets executes an add operation between operand 1 (OP1) and operand 2 (OP2)
with fixed-point numbers.

Operand permitted: Byte and word

The sequence of the operation is: First the instructions in the bracket create OP2 as temporary result. Then the add operation with
OP1, which was previously loaded into the ACC is carried out. The result is available in the ACC as RESULT. By this process the
former ACC contents are overwritten.

The stack contents and depth are unchanged after the execution of the instruction. When, however, an operand in the bracket is a
value of the stack, the stack address is incremented.

According to the selection of the operand format (byte or word), an overflow bit (M0.7 = 1), is created by the operating system in
the formation of the result if the range of values is exceeded.This overflow bit can be queried after the execution of the operation:

 Byte format: value >+127 M0.7=1
 Word format: value >+32767 M0.7=1

When an overflow bit occurs, the result must be corrected by appropriate programming steps.

Example, execution of the ADD(...) instruction:

Program listing Sequence of execution Coments
LD OP1
ADD(BI0
MUL BI1
)

LD OP1
LD BIO
MUL BI1
ADD OP1

/(result represents
/ OP2)

The compiler permits up to sixfold nesting of such combinations of commands provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

 /P_ADD.PGM

 /example: ADD=adding with byte operands
 /overflow is filed by the system in bit marker M0.7
 /if result >+127 in byte processing
 /(or when result >32767 in word processing)
 /task: 126+3=129
 /output, however, shows 81hex=-127, false result
 /because range was exceeded -> overflow!

 ld bc126 /OP: load constant „+126“ into ACC
 add bc3 /OP2: add constant „+3“
 st bm10 /RESULT: store in marker byte
 ld m0.7 /load status byte
 jmpc overf /jump if status bit „1“
 ld bm10 /load result
 st bo0 /readout result
 jmp end /unconditional jump to the end
 overf: nop /e.g. correction routine
 ld bm10 /load corrected result
 st bo0 /readout corrected result
 end: ep /end of program

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

60

Programming example:

 /P_ADDPP.PGM
 /example: ADD8...) = add operation with command nesting
 /in byte format
 /task: 4+(3*2)=10—>0Ah

 ld bc4 /OP1:=4
 add(bc3 /OP2:=2*3=6
 mul bc2
)
 st bo0 /RESULT:=10
 ep

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

61

3.4.2 Subtract Instructions

SUB Subtract.
The SUB instruction subtracts two signed fixed-point numbers. These numbers are represented by operands in the instruction.

Formats permitted: Byte and word

The first operand is the ACC contents and the second operand is the parameter following the command. The result is available in
the ACC as RESULT. By this process the former ACC contents are overwritten. In this case the stack contents and depth are
unchanged.
When a SUB instruction is to be executed without the declaration of operands, it is undestood that OP1 was loaded into the ACC
and OP2 is in the stack. Again the result is available in the ACC as RESULT the former ACC contents having been overwritten. In
this case the stack address is incremented.

According to the selection of the operand format (byte or word), an overflow bit, M0.6 = 1, is created by the operating system in the
formation of the result if the range of values is exceeded. This overflow bit can be queried after the execution of the operation:

 Byte format: value <-128 M0.6 = 1
 Word format: value <-32768 M0.6 = 1

When the overflow bit occurs, the result must be corrected by appropriate programming steps.

Declaration in byte format:

Programming example:
Formation of bit marker M0.6 and indication of result correction

 LD BC100 /OP1: +100
 SUB BC20 /OP2: -20
 ST BO /RESULT: +80

 /P_SUB.PGM
 /example: SUB = subtraction with byte operands
 /overflow is filed by the system in bit marker M0.6
 /if result <-128 in byte format
 /(or if result <-32768 in word format)
 /task: -126-(+3) = -129
 /output, however, shows 7Fhex = +127, false result
 /because range is exceeded —> overflow!

 ld bc-126 /OP1: load constant „-126“ into ACC
 sub bc3 /OP2: subtract constant „+3“
 st bm10 /RESULT: store result in marker byte
 ld m0,6 /load status bit
 jmpc overf /jump when status bit „1“
 ld bm10 /load result
 st bo0 /readout result
 jmp end /unconditional jump to the end
 overf: nop /e.g. correction routine
 ld bm10 /load corrected result
 st bo0 /readout corrected result
 end: ep
 /end of program

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

62

3.4.3 Multiply Instructions

MUL Multiply.
The MUL instruction multiplies two signed fixed-point numbers. These values are represented in the instruction by operands.

 Operand permitted: Byte and word

The first operand (OP1) is the ACC contents and the second operand is the parameter following the instruction. The result is
available in the ACC as RESULT. By this process the former ACC contents are overwritten. In this case the stack contents and
depth are unchanged.
When a MUL instruction is to be executed without the declaration of operands, it is understood that OP1 was loaded into the ACC
and OP2 is in the stack. Again the result is available in the ACC as RESULT the former contents of the ACC having been
overwritten. In this case the stack address is incremented.

According to the selection of the operand format (byte or word) an overflow bit, M0.5 = 1, is created by the operating system in the
formation of the result if the range of values was exceeded. This overflow bit can be queried after the operation:

 Byte format: value <-128 or >+127 M0.5 = 1
 Word format: value <-32768 or >+32767 M0.5 = 1

When the overflow bit occurs, the result must be corrected by appropriate programming steps.

Declaration example in byte format:

Programming example:
Creation of bit marker M0.5 and indication of the correction of the result

 LD BC10 /OP1: +10
 MUL BC8 /OP2: + 8
 ST BO /RESULT: +80

 /P_MUL.PGM
 /example: MUL = multiply operation with byte operands
 /overflow is filed by the system in
 /bit marker M0.5 if result <-128 or >+127
 /(or if result <-32768 or >+32767
 /in word processing)
 /task: 16*8 = 128
 /output, however, shows 80hex = false result
 /because range was exceeded —> overflow!

 ld bc16 /OP1:load value „+16“ into ACC
 mul bc8 /OP2: multiply by constant „+8“
 st bm10 /RESULT: store in marker byte
 ld m0.5 /load status byte
 jmpc overf /jump if status bit „1“
 ld bm10 /load result
 st bo0 /readout result
 jmp end /unconditional jump to the end
 overf: nop /e.g. correction routine
 ld bm10 /load corrected result
 st bo0 /readout corrected result
 end: ep /end of program

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

63

MUL(...) Multiply instruction with nesting.
The MUL instruction with command nesting in brackets executes a multiply operation between operand 1 (OP1) and operand 2
(OP2) with fixed-point numbers.

 Operand permitted: Byte and word.

The sequence in the execution is this: First the instructions in the bracket create OP2 as temporary result. Only then is the multiply
operation with OP1, which was previously loaded into the ACC, carried out. The result is available in the ACC as RESULT. By this
process the former ACC contents are overwritten.

The stack contents and depth are unchanged after the execution of the command. When, however, an operand in the bracket is a
value of the stack, the stack address is incremented.

According to the selection of the operand format (byte or word) an overflow bit, M0.5=1, is created by the operating system in the
formation of the result if the range of values is exceeded. This overflow bit can be queried after the operation:

 Byte format: value <-128 or >+127 M0.5=1
 Word format: value <-32768 or >+32767 M0.5=1

When the overflow bit occurs, the result must be corrected by appropriate programming steps.

Example, execution of the MUL(...) instruction:

Program listing Sequence of execution Coments

 LD OP1
 MUL(BI0
 ADD BI1
)

 LD OP1
 LD BI0
 ADD BI1
 MUL OP1

/(result represents
/(OP2

The compiler permits up to sixfold nesting of such combinations of commands provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Programming example:

 /P_MULPP.PGM
 /example: MUL(...) = multiply operation with
 /command nesting in byte format
 /task: 8*(3+2) = 40 —> 28hex

 ld bc8 /OP1
 mul(bc3 /(OP2: = 3+2 = 5
 add bc2
)
 st bo0 /result: = 40
 ep

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

64

3.4.4 Divide Instructions

DIV Divide.
The divide instruction divides two signed fixed-point numbers. These values are represented by operands in the instruction.
Occurring digits after the decimal point are cut off without further processing (without rounding).

 Operand permitted: Byte and word.

The first operand (OP1) is the ACC contents and the second operand (OP2) is the parameter following the command. The result is
available in the ACC as RESULT. By this process the former ACC contents are overwritten. The stack contents and depth are
unchanged.

When a DIV instruction is to be executed without the declaration of operands, it is understood that OP1 was loaded into the ACC
and OP2 is in the stack. Again the result is available in the ACC as RESULT the former ACC contents having been overwritten. In
this case the stack address is incremented.

Independent of the operand format, the operating system creates an overflow bit, M0.4 = 1, in a divide operation by 0. This overflow
bit can be queried after the operation.

When the overflow bit occurs, the result must be corrected by appropriate programming steps.

Declaration example in byte format:

Programming example:
Creation of bit marker M0.4 and indication of result correction

 LD BC100 /OP1: 100
 DIV BC20 /OP2: 20
 ST BO /RESULT: 5

 /P_DIV.PGM
 /example: DIV = divide operation with byte operands
 /overflow is filed by the system in bit marker M0.4
 /when there is a divide operation by 0
 /task: 32:0 = 0
 /output, however, shows FFhex = -1, false result
 /because operation is illegal!

 ld bc32 /OP1: load value „+32“ into ACC
 div bc0 /OP2: divide operation by constant „0“
 st bm10 /RESULT: store in marker byte
 ld m0.4 /load status byte
 jmpc overf /jump if status byte „1“
 ld bm10 /load result
 st bo0 /readout result
 jmp end /unconditional jump to the end
 overf: nop /e.g. correction routine
 ld bm10 /load corrected result
 st bo0 /readout corrected result
 end: ep /end of program

3.4

 B-CONW
Programming

Arithmetic Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

65

DIV(...) Divide with nesting.
The DIV instruction with command nesting in brackets executes a divide operation between operand 1 (OP1) and operand 2 (OP2)
with fixed-point numbers. The result is an integer value. Occurring digits after the decimal point are cut off without further
processing (rounding).

 Operand permitted: Byte and word

The sequence of the operation is this: First the instructions in the bracket create OP2 as temporary result. Only then is the divide
operation with OP1, which is previously loaded into the ACC, carried out. The result is available in the ACC as RESULT the former
ACC contents having been overwritten.

The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

Independent of the operand format (byte or word), an overflow bit, M0.4 = 1, is created by the operating system. This overflow bit
can be queried after the operation.

When the overflow bit occurs, the result must be corrected by appropriate programming steps.

Example, execution of the DIV(...) instruction:
Program listing Sequence of execution Coments
LD OP1
DIV(BI0
ADD BI1
)

 LD OP1
 LD BI0
 ADD BI1

/(result represents
 /OP2)

The compiler permits up to sixfold nestimg of such combinations of commands provided the stack is not overloaded. Maximum
stack depth is 8 bytes.

Programming examples:

 P_DIVPP.PGM
 example: DIV(...) = divide operation with command nesting
 in byte format

 task: 8/(2+2) = 2 —> 02hex

 ld bc8 /OP1
 div(bc2 /(OP2: = 2+2
 add bc2 /
)
 st bo0 /result: = 2
 ep

 /P_DIVPP.PGM
 /example: DIV(...) = divide operation with twofold
 /command nesting in byte format
 /task: 10/(3+(3-1) = 2 —> 02hex

 ld bc10 /OP1: = 10
 div(bc3 /OP2: = (3+(3-1)
 add(bc3
 sub bc1
)
)
 st bo0 /result: = 2
 ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

66

3.5 Compare Instructions

Compare With Signed Operands.
Compare instructions cause the recognition of the value relation between two signed operators to be compared. For this operation
the value ranges of signed operands in byte and word formats are to be regarded.

Compare With Unsigned Operands.
Compare instructions cause the recognition of the value relation between two unsigned operators to be compared. For this
operation the value ranges of unsigned operands in byte and word formats are to be regarded.

Bit format

<———Signed———>
 negative positive

range of numbers

 <—Unsigned—>
total amount of numbers

 8 bit

 16 bit

 -128 ... -1
 80h ... FFh
 -32768 ... -1
 8000h ... FFFFh

 0 ... +127
 0h ... +7Fh
 0 ... +32767
 0h ... +7FFFh

0 ... 255
0 ... FFh
0 ... 65535
0 ... FFFFh

3.5.1 Compare, Greater

Compare instructions to greater state the value relation to "greater than" between signed operators OP1 and OP".

GT Signed - Compare to „>“.
The GT instruction compares two signed operands and states in the result if operand 1 > operand 2.

Only operands in byte and word formats can be applied.

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log. 1 or 0), is available in the ACC in bit format for evaluation for jump
instructions. The former ACC contents is overwritten. In this case the stack is unchanged.

When no operand (OP2) is declared in the GT instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result
 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 0
 0

Declaration example with OP2 declaration in standard form:

Declaration example with OP2 as stack operand:

 LD BC4 /OP1: load constant of value 4
 GT BC2 /OP2: compare OP1>OP2

 LD BC4 /OP1: load constant of value 4 into ACC
 LD BC2 /OP2: load constant of value 2 into stack
 GT B /compare OP1>OP2 (stack operand)

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

67

In operations with a stack operand the allocation of operands (which is which) differs from the general command notation
(sequence of operand allocations).

Programming example:

UGT Unsigned compare to „>“.
The UGT instruction compares two unsigned operands and states in the result if operand 1 > operand 2.

Only operands in byte and word formats can be applied.

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log. 1 or 0), is available in the ACC in bit format for evaluation for jump
instructions. The former ACC contents is overwritten. In this case the stack is unchanged.

When no operand (OP2) is declared in the UGT instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 0
 0

Declaration example:

 /P_GT.PGM
 /example: GT = greater than
 /
 /For illustration the program sets
 /with OP1>OP2: output bit 0.0 „1“ and
 /with OP1<=OP2: output bit 0.7 „1“.

 ld bi0 /OP1
 gt bch04 /OP2
 jmpc big /jump if „>“
 ld bch01
 st bo0 /01h output if „<=“
 jmp ende
 big:
 ld bch80
 st bo0 /80h output if „>“
 ende: ep

 LD BC4 OP1: load constant of value 4
 UGT BC2 /OP2: compare OP1>OP2

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

68

Programming example:

GT(..) Signed compare to „>“ with nesting.
The GT instruction with command nesting in brackets compares two signed operands and states in the result if operand 1 >
operand 2.

 Operand formats permitted: Byte and word

For the execution of the instruction it is required that operand 1 is the current ACC contents and operand 2 is the temporary result
of the instructions in the bracket. After the operation the result in bit format is available in the ACC as a Boolean value (log. 1 or 0).
The former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting do such combinations of commands provided the stack is not overloaded. Maximum
stack depth is 8 bytes.

Table of compare conditions

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 0
 0

The sequence in the execution of the GT instruction is this: First the operations declared in the bracket are executed. They create
OP2.

Declaration example:
 Program listing Sequence of execution Coments

 LD BC4
 GT(BC2
 ADD BC1
) GT

 LD BC4
 LD BC2
 ADD BC1
 B

/OP1: load constant of value 4
/
/OP2: add result: value 3
/RESULT: OP1>OP2 = log. 1

 /P_UGT.PGM
 /example: UGT = greater than
 /
 /For illustration the program sets
 /“>“: output byte 0 to F0h.

 ld bc255 /OP1
 ugt bch254 /OP2
 jmpc big /jump if „>“
 ld bch00 /put off output
 st bo0
 jmp ende
 big:
 ld bchf0
 s bo0 /if „>“: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

69

Programming example:

UGT(..) Unsigned compare to „>“ with nesting.
The UGT instruction with command nesting in brackets compares two unsigned operands and states in the result if operand 1 >
operand 2.

Operand formats permitted: Byte and word

For the execution of the instruction it is required that operand 1 is the current ACC contents and operand 2 is the temporary result
of the instructions in the bracket. After the operation the result in bit format is available in the ACC as a Boolean value (log. 1 or 0).
The former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting do such combinations of commands provided the stack is not overloaded. Maximum
stack depth is 8 bytes.

Table of compare conditions

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 0
 0

The sequence in the execution of the UGT instruction is this: First the operations declared in the bracket are executed. They create
OP2.

 /P_GTPP.PGM
 /example: GT(...) greater than
 /
 /if > : RESULT „1“

 /For illustration the program sets...
 /if <=: output bit 0.0 to „1“,
 /if >: output bit 0.7 to „1“

 ld bi0 /OP1 as variable
 gt(bch04 /OP2: = 4+1
 add bch01 /(
)
 jmpc groesse /jump if „>“
 ld bch01
 st bo0 /if „<=“
 jmp ende
 groesse:
 ld bch80
 st bo0 /if „>“
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

70

Declaration example:

 Program listing Sequence of execution Coments

 LD BC4
 UGT(BC2
 ADD BC1
)

 LD BC4
 LD BC2
 ADD BC1
 UGT B

/OP1: load constant of value 4
/
/OP2: add result: value 3
/RESULT: OP1>OP2 = log. 1

Programming example:

 /P_UGTPP.PGM
 /example: UGT(...) greater than
 /if „>“ : RESULT „1“

 /For illustration the program sets...
 /if „>=“: output bit 0.0 to „1“,
 /if „<„: output bit 0.7 to „1“

 ld bc240 /OP1 as constant
 ugt(bc200 /OP2: = 200+3
 add bch39 /(
)
 jmpc groesse /jump if „>“
 ld bch01
 st bo0 /if „<=“
 jmp ende
 groesse:
 ld bch80
 st bo0 /if „>“
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

71

3.5.2 Compare greater or equal

Compare instructions to greater - equal state the value relation to greater than or equal between signed operators OP1 and OP2,
which are to be compared.

GE Signed, compare to „>=“.
The GE instruction compares two signed operands and states in the result if operand 1 >= operand 2.

Operand formats: Byte and word

For the execution of the command it is required that OP1 is in the ACC and OP2 is declared as a parameter in the instruction. The
result, which is a Boolean statement (log. 1 or 0), is available in bit format in the ACC after the operation for evaluation for jump
instructions. The former ACC contents are overwritten. The stack is unchanged.

When no operand (OP2) is declared in the GE instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 1
 0

Declaration example with OP2 declaration in standard form:

Declaration example with OP2 as stack operand:

In operations with a stack operand the allocation of operands (which is which) differs from the general command notation
(sequence of operand allocations).

Programming example:

 LD BC4 /OP1: load constant of value 4
 GE BC2 /OP2: compare to >= OP1 with OP2

 LD BC2 /OP1: load constant of value 2 into ACC
 LD BC4 /OP2: load constant of value 4 into stack
 EQ B /compare to >= OP1 with stack operand (OP2)

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

72

UGE Unsigned compare to „>=“
The UGE instruction compares two unsigned operands and states in the result if operand 1 >= operand 2.

Operand formats : Byte and word

For the execution of the command it is required that OP1 is in the ACC and OP2 is declared as a parameter in the instruction. The
result, which is a Boolean statement (log. 1 or 0), is available in bit format in the ACC after the operation for evaluation for jump
instructions. The former ACC contents are overwritten. The stack is unchanged.

When no operand (OP2) is declared in the UGE instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 1
 0

Declaration example:

Programming example:

 /P_GE.PGM
 /example: GE = greater than or equal
 /
 /For illustration the program sets
 /if >=: output bit 0.0 „1“ and
 /if <: output bit 0.7 „1“.
 /
 ld bi0 /OP1
 ge bi1 /OP2
 jmpc groesse /jump if „>=“
 ld bch01
 st bo0 /01h output if „<„
 jmp ende
 groesse:
 ld bch80
 st bo0 /80h output if „>=“
 ende: ep

 LD BC4 /OP1: load constant of value 4
 GE BC2 /OP2: compare to >= OP1 with OP2

 /P_UGE.PGM
 /example: UGE = greater than or equal

 /For illustration the program sets
 /if „>=“: output byte 0 to F0h.
 /
 ld bc230 /OP1
 uge bc230 /OP2
 jmpc groegl /jump if „>=“
 ld bch00 /put off output
 st bo0 /01h output if „<„
 jmp ende
 groegl:
 ld bcf80
 st bo0 /if „>=“: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

73

GE(...) Signed compare to „>=“ with nesting.
The GE instruction with command nesting in brackets compares two signed operands and states in the result if operand 1 >=
operand 2.

Operands formats: Byte and word

The execution of the instruction requires that operand 1 is the current ACC contents and operand 2 is the temporary result created
by the bracketed instructions. After the operation the result in bit format is available in the ACC as a Boolean statement (log. 1 or 0).
The former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 1
 0

The sequence in the execution of the GE(...) instruction is this: First the operations in the bracket are executed. They create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC4
 GE(BC2
 ADD BC1
)

 LD BC4
 LD BC2
 ADD BC1
 GE B

/OP1: load constant of value 4
/
/OP2: add result: value 3
/RESULT: OP1>=OP2 = log.1

Programming example:

 /P_GEPP:PGM
 /example: GE(...) greater than or equal
 /
 /if > and =: RESULT is „1“
 /For illustration the program sets
 /if <: output bit 0.0 to „1“
 /if >=: output bit 0.7 to „1.

 ld bi0 /OP1 as variable
 ge(bch04 /(OP2: = 4+2
 add bch02 /(
)
 jmpc groesse /jump if „>=“
 ld bch01
 st bo0 /if „<„
 jmp ende
 groesse:
 ld bch80
 st bo0 /if „>=“
 ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

74

UGE(...) Unsigned, compare to „>=“ with nesting.
The UGE instruction with command nesting in brackets compares two unsigned operands and states in the result if operand 1 >=
operand 2.

Operands formats: Byte and word

The execution of the instruction requires that operand 1 is the current ACC contents and operand 2 is the temporary result created
by the bracketed instructions. After the operation the result in bit format is available in the ACC as a Boolean statement (log. 1 or 0).
The former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 1
 1
 0

The sequence in the execution of the UGE(...) instruction is this: First the operations in the bracket are executed. They create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC4
 UGE(BC2
 ADD BC1
)

 LD BC4
 LD BC2
 ADD BC1
 UGE B

/OP1: load constant of value 4
/
/OP2: add result: value 3
/RESULT: OP1>=OP2 = log.1

Programming example:

 /P_UGEPP:PGM
 /example: UGE(...) greater than or equal
 /if „>“ and „=: RESULT is „1“
 /For illustration the program sets
 /if „<„: output bit 0.0 to „1“
 /if „>=“: output bit 0.7 to „1.

 ld bc250 /OP1
 uge(bc255 /(OP2: = 255-5
 sub bc5 /(
)
 jmpc groesse /jump if „>=“
 ld bch01
 s bo0 /if „<„
 jmp ende
 groesse:
 ld bch80
 st bo0 /if „>=“
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

75

3.5.3 Compare, equal

Compare instructions to equal state the value relation to equal between signed operands OP1 and OP2.

EQ Compare signed to equal.
The EQ instruction compares two signed operands and states in the result“ if operand 1 = operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log.1 or 0), is available in bit format in the ACC for evaluation for jump
instructions. The former ACC contents are overwritten. In this case the stack is unchanged.
When no operand is declared in the EQ instruction, it is understood that OP2 is in the stack. Again the result is available in the ACC
as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

Declaration example with OP2 declaration in standard form:

Declaration example with OP2 as stack operand:

n operations with a stack operand, the allocation of operands (which is which) differs from the general command notation
(sequence of operand allocations).

Programming example:

 LD BC4 /OP1: load constant of value 4
 EQ BC2 /OP2: compare to „=“: OP1 with OP2

 LD BC2 /OP1: load constant of value 2 into ACC
 LD BC4 /OP2: load constant of value 4 into stack
 EQ B /compare to „=“: OP1 with stack operand (OP2)

 /P_EQ.PGM
 /example: EQ = equal
 /
 /For illustration the program sets:
 /if „=“: output byte 0 to F0h.
 /
 ld bi0 /OP1
 eq bi1 /OP2
 jmpc gleich /jump if „=“
 nop
 ld bch00 /put off output
 jmp ende
 gleich:
 ld bchf0
 st bo0 /if „=“: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

76

UEQ Unsigned compare to „=“
The EQ instruction compares two unsigned operands and states in the result“ if operand 1 = operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log.1 or 0), is available in bit format in the ACC for evaluation for jump
instructions. The former ACC contents are overwritten. In this case the stack is unchanged.

When no operand is declared in the UEQ instruction, it is understood that OP2 is in the stack. Again the result is available in the
ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

Declaration example:

Programming example:

 LD BC4 /OP1: load constant of value 4
 UEQ BC2 /OP2: compare to „=“: OP1 with OP2

 /P_UEQ.PGM
 /example: UEQ = equal (gleich)
 /
 /For illustration the program sets:
 /if „=“: output byte 0 to F0h.
 /
 ld bc255 /OP1
 ueq bc255 /OP2
 mpc gleich /jump if „=“
 nop
 ld bc0 /put off output
 st bo0
 jmp ende
 gleich:
 ld bch0f0
 st bo0 /if „=“: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

77

EQ(...) Signed compare to „=“ with nesting.
The EQ instruction with command nesting in brackets compares two signed operands and states in the result if operand 1 =
operand 2.

Operand formats: Byte and word

The execution of the instruction requires that operand 1 is the current ACC contents and operand 2 is the temporary result created
by the bracketed instructions. After the operation the result in bit format is available in the ACC as a Boolean value (log. 1 or 0). The
former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

The sequence in the execution of the EQ(...) instruction is this: First the operations in the bracket are executed. They create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC4
 EQ(BC2
 ADD BC2
)

 LD BC4
 LD BC2
 ADD BC2
 EQ B

/OP1: load constant of value 4
/
/OP2: add result: value 4
/RESULT: OP1=OP2 (=log.1)

Programming example:

 /P_EQPP.PGM
 /example: EQ(...) equal
 /gleich
 /if „=“: result is „1“

 /For illustration the program sets
 /if <>: output bit 0.0 to „1“ and
 /if =: output bit 0.7 to „1“

 ld bi0 /OP1 as variable
 eq(bch04 /(OP2: = 4+3
 add bch03 /(
)
 jmpc gleich /jump if „=“
 ld bch01
 st bo0 /if „<>“
 jmp ende
 gleich:
 ld bch80
 st bo0 /if „=“
 ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

78

UEQ(...) Unsigned compare to „=“ with nesting.
The UEQ instruction with command nesting in brackets compares two unsigned operands and states in the result if operand 1 =
operand 2.

Operand formats: Byte and word

The execution of the instruction requires that operand 1 is the current ACC contents and operand 2 is the temporary result created
by the bracketed instructions. After the operation the result in bit format is available in the ACC as a Boolean value (log. 1 or 0). The
former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

The sequence in the execution of the UEQ(...) instruction is this: First the operations in the bracket are executed. They create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC4
 UEQ(BC2
 ADD BC2
)

 LD BC4
 LD BC2
 ADD BC2
 UEQ B

/OP1: load constant of value 4
/
/OP2: add result: value 4
/RESULT: OP1=OP2 (=log.1)

Programming example:

 /P_UEQPP.PGM
 /example: UEQ(...) equal (gleich)
 /if „=“: result is „1“

 /For illustration the program sets
 /if <>: output bit 0.0 to „1“ and
 /if =: output bit 0.7 to „1“

 ld bc220 /OP1 as constant
 ueq(bc204 /(OP2: = 20*11
 add bc11 /(
)
 jmpc gleich /jump if „=“
 ld bch01
 st bo0 /if „<>“
 jmp ende
 gleich:
 ld bch80
 st bo0 /if „=“
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

79

3.5.4 Compare, less or equal

Compare instructions to less or equal state the value relation to less or equal between signed operands OP1 and OP2, which are to
be compared.

LE Signed compare to „<=“.
The LE instruction compares two signed operands and states in the result if operand 1 <= operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log. 1 or 0), is available in bit format in the ACC for evaluation for jump
instructions. The former ACC contents are overwritten. The stack is unchanged.

When no operand (OP2) is declared in the LE instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

Declaration example with OP2 declaration in standard form:

Declaration example with OP2 as stack operand

In operations with a stack operand the allocation of operands (which is which) differs from the general notation of instructions
(sequence of operand allocations).

Programming example:

 LD BC2 /OP1: load constant of value 2
 LE BC4 /OP2: compare to <=: OP1 with OP

 LD BC4 /OP1: load constant of value 4 into ACC
 LD BC2 /OP2: load constant of value 2 into stack
 LE /compare to <=: OP1 with stack operand (OP2)

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

80

 /P_LE.PGM
 /example: LE = less or equal
 /
 /For illustration the program sets
 /if „<=“: output byte 0 to F0h

 ld bi0 /OP1
 le bi1 /OP2
 jmpc klglei /jump if „<=“
 ld bch00 /put off output
 st bo0
 jmp ende
 klglei:
 ld bchf0
 st bo0 /if „<=“: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

81

ULE Unsigned compare to „<=“.
The ULE instruction compares two unsigned operands and states in the result if operand 1 <= operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log. 1 or 0), is available in bit format in the ACC for evaluation for jump
instructions. The former ACC contents are overwritten. The stack is unchanged.

When no operand (OP2) is declared in the ULE instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean value. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 1

Declaration example with OP2 declaration in standard form:

Declaration example:

Programming example:

 LD BC2 /OP1: load constant of value 2
 LE BC4 /OP2: compare to <=: OP1 with OP

 LD BC2 /OP1: load constant of value 2
 ULE BC4 /OP2: compare to <=: OP1 with OP2

 /P_ULE.PGM
 /example: ULE = less or equal
 /
 /For illustration the program sets
 /if „<=“: output byte 0 to F0h

 ld bc254 /OP1
 ule bc255 /OP2
 jmpc klglei /jump if „<=“
 ld bch00 /put off output
 st bo0
 jmp ende
 klglei:
 ld bchf0
 st bo0 /if „<=“: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

82

LE(...) Signed compare to „<=“ with nesting.
The LE instruction with command nesting in brackets compares two signed operands and states in the result if operand 1 <=
operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that operand 1 is the current ACC contents and operand 2 is the temporary result
created by the instructions in the bracket. After the operation the result in bit format is available in the ACC as a Boolean value (log.
1 or 0). The former ACC contents are overwritten.

The stack contents and depth are unchanged after the execution of the instruction. When, however, an operand in the bracket is a
value of the stack, the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

The sequence in the execution of the LE(...) instruction is this: First the operations declared in the bracket are executed. They
create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC3
 LE(BC2
 ADD BC2
)

 LD BC3
 LD BC2
 ADD BC2
 LE B

/OP1: load constant of value 3
/
/OP2: add result: value 4
/RESULT: OP1<=OP2 =log.1

Programming example:

 /P_LEPP.PGM
 /example: LE(...) less or equal
 /
 /if „<=“: RESULT is „1“

 /For illustration the program sets
 /if „>“: output bit 0.0 to „1“ and
 /if „<=“: output bit 0.7 to „1“

 ld bi0 /OP1 as variable
 le(bch04 /(OP2: = 4+4
 add bch04 /(
)
 jmpc klglei /jump if „<=“
 ld bch01
 st bo0 /if „>“
 jmp ende
 klglei:
 ld bch80
 st bo0 /if „<=“
 ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

83

ULE(...) Instruction - compare to „<=“ with nesting
The ULE instruction with command nesting in brackets compares two unsigned operands and states in the result if operand 1 <=
operand 2.

Only operand in byte and word formats can be applied.

For the execution of the instruction it is required that operand 1 is the current ACC contents and operand 2 is the temporary result
created by the instructions in the bracket. After the operation the result in bit format is available in the ACC as a Boolean value (log.
1 or 0). The former ACC contents are overwritten.

In this case the stack contents and depth are unchanged after the execution of the instruction. When, however, an operand in the
bracket is a value of the stack, the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 1

The sequence in the execution of the ULE(...) instruction is this: First the operations declared in the bracket are executed. They
create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 Program listing Sequence of execution Coments

 LD BC3
 ULE(BC2
 ADD BC2
)

 LD BC3
 LD BC2
 ADD BC2
 ULE B

/OP1: load constant of value 3
/
/OP2: add result: value 4
/RESULT: OP1<=OP2 =log.1

Programming example:

 /P_ULEPP.PGM
 /example: ULE(...) less or equal
 /if „<=“: RESULT is „1“

 /For illustration the program sets
 /if „>“: output bit 0.0 to „1“ and
 /if „<=“: output bit 0.7 to „1“

 ld bc124 /OP1: = 124
 ule(bc250 /(OP2: = 250 div 2 = 125
 div bc2 4 /(
)
 jmpc klglei /jump if „<=“
 ld bch01
 st bo0 /if „>“
 jmp ende
 klglei:
 ld bch80
 st bo0 /if „<=“
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

84

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

85

3.5.5 Compare, less than

Compare instructions to less state the value relation to less between signed operands OP1 and OP2, which are to be compared.

LT Signed compare to „<„..
The LT instruction compares two signed operands and states in the result if operand 1 < operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log. 1 or 0), is available in bit format in the ACC for evaluation for jump
instructions. The former ACC contents are overwritten. The stack is unchanged.

When no operand (OP2) is declared in the LT instruction, it is understood that OP2 is in the stack. Again the result is available in
the ACC as a Boolean statement. After the operation the stack address is incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 1
 0

Declaration example with OP2 declaration in standard form:

Declaration example with OP2 as stack operand:

In operations with a stack operand the allocation of operands (which is which) differs from the general command notation
(sequence of operand allocations).

Programming example:

 LD BC2 /OP1: load constant of value 2
 LT BC4 /OP2: compare to „<„: OP1 with OP2

 LD BC4 /OP1: load OP1 of value 4 into ACC
 LD BC2 /OP2: load constant of value 2 into stack
 LT B /compare to „<„: OP1 with stack operand (OP2)

 /P_LT.PGM
 /example: LT = less than
 /
 /For illustration the program sets
 /if „<„: output byte 0 to F0h
 /
 ld bi0 /OP1
 lt bi1
 jmpc kleiner /jump if „<„
 ld bch00 /put off output
 st bo0
 jmp ende
 kleiner:
 ld bchf0
 st bo0 /if „<„: output F0h
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

86

ULT Unsigned compare to "<".

The ULT instruction compares two unsigned operands and states in the result if operand 1 < operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is in the ACC and OP2 is declared in the instruction as a parameter. After
the operation the result, which is a Boolean statement (log. 1 or 0), is available in bit format in the ACC for evaluation for jump
instructions.
The former ACC contents are overwritten. The stack is unchanged.

When no operand (OP2) is declared in the ULT instruction, it its understood that OP2 is in the stack. Again the result is available in
the incremented correspondingly.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 0
 1

Declaration example:

Programming example:

 LD BC2 /OP1: load constant of value 2
 ULT BC4 /OP2: compare to "<": Op1 with OP2

 /P_ULT.PGM
 /example:ULT=less than
 /
 /For illustration the program sets
 /if"<": output byte 0 to F0h
 /ld bc254 /OP1
 ult bc256 /OP2
 jmpc kleiner /jump if "<"
 ld bch00 /put off output
 st bc0
 jmp ende
 kleiner:
 ld bchf0
 st bc0 /if"<": output F0h
 ende ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

87

LT(...) Signed compare to „<„ with nesting.
The LT instruction with command nesting in brackets compares two signed operands and states in the result if operand 1 <
operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is the current ACC contents and OP2 is the temporary result created by
the instructions in the bracket. After the operation the result in bit format is available in the ACC as a Boolean value (log. 1 to 0).
The former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.

The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 0
 1

The sequence in the execution of the LT(...) instruction is this: First the operations declared in the bracket are executed. They
create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC3
 LT(BC2
 ADD BC2
)

 LD BC3
 LD BC2
 ADD BC2
 LT B

/OP1: load constant of value 3
/
/OP2: add result: value 4
/RESULT: OP1<OP2 =log.1

Programming example:

 /P_LTPP.PGM
 /example: LT(...) = less than
 /
 /if „<„: result = „1“

 /For illustration the program sets
 /if „>=“: output bit 0.0 to „1“
 /if „<„: output bit 0.7 to „1“

 ld bi0 /OP1 as a variable
 lt(bch04 /(OP2: = 4+5
 add bch05 /(
)
 jmpc kleiner /jump if „<„
 ld bch01
 st bo0 /if „>=“
 jmp ende
 kleiner:
 ld bch80
 st bo0 /if „<„
 ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

88

ULT(...) Unsigned compare to „<„ with nesting.
The ULT instruction with command nesting in brackets compares two signed operands and states in the result if operand 1 <
operand 2.

Operand formats: Byte and word

For the execution of the instruction it is required that OP1 is the current ACC contents and OP2 is the temporary result created by
the instructions in the bracket. After the operation the result in bit format is available in the ACC as a Boolean value (log. 1 to 0).
The former ACC contents are overwritten.
The stack contents and depth are unchanged after the operation. When, however, an operand in the bracket is a value of the stack,
the stack address is incremented.
The compiler permits up to sixfold nesting of such command combinations provided the stack is not overloaded. Maximum stack
depth is 8 bytes.

Table of compare conditions:

 Condition Result

 OP1 > OP2
 OP1 = OP2
 OP1 < OP2

 0
 0
 1

The sequence in the execution of the LT(...) instruction is this: First the operations declared in the bracket are executed. They
create OP2.

Declaration example:

 Program listing Sequence of execution Coments

 LD BC3
 LT(BC2
 ADD BC2
)

 LD BC3
 LD BC2
 ADD BC2
 LT B

/OP1: load constant of value 3
/
/OP2: add result: value 4
/RESULT: OP1<OP2 =log.1

Programming example:

 /P_LTPP.PGM
 /example: LT(...) = less than
 /if „<„: result = „1“

 /For illustration the program sets
 /if „>=“: output bit 0.0 to „1“
 /if „<„: output bit 0.7 to „1“

 ld bi0 /OP1 as a variable
 lt(bch04 /(OP2: = 4+5
 add bch05 /(
)
 jmpc kleiner /jump if „<„
 ld bch01
 st bo0 /if „>=“
 jmp ende
 kleiner:
 ld bch80
 st bo0 /if „<„
 ende: ep

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

89

MEQ Masked Equal

MEQ (macro) checks if masked first variable is equal to the second variable. Set the result if they are equal.

Usage:
 MEQ FrstVar Mask ScndVar,Rslt
 MEQ FrstVar,Mask,ScndVar,Rslt

Number of parameters: 4.

Parameters description:

“FrstVar” - A first variable to be compared.
 Type of Parameter: BYTE or WORD.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT.

“Mask” - The Mask used in comparison.
 Type of Parameter: BYTE or WORD.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT.

“ScndVar” - A second variable to be compared.
 Type of Parameter:BYTE or WORD.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT.

“Rslt” - A bit variable, where the result of comparison is stored.
 The result is set True (1) if FirstVar & Mask is equal to ScndVar.
 If FirstVar & Mask is not equal to ScndVar the Rslt should be False (0).
 Type of Parameter: BIT.
 Location For the Parameter: OUTPUT or MEMORY.

MEQ Usage is equivalent to the following BCON S program:
 LD FrstVar
 AND Mask
 EQ ScndVar
 ST Rslt

Stack Depth for macro - 2 BYTEs

Examples:

 Main:
 BIT Equal
 MEQ bi02,bc16#0f,bc11,Equal
 // If byte input 02 & 0fhex is equal to 11,
 // than set Equal
 LD Equal
 Jmpc Lab1 // Jump if equal to label Lab1

 Lab1: EP

3.5

 B-CONW
Programming

Compare Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

90

LIM In Limit Check

LIM (macro) checks if value is in limits.

Usage:
 LIM FrstVar LowVal HighVal,Rslt
 LIM FrstVar,LowVal,HighVal,Rslt

Number of parameters: 4

Parameters description:

 “FrstVar” - The variable to be checked for the limits.
 Type of Parameter: BYTE or WORD.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY.

 “LowVal” - Low Limit in In Limit Check.
 Type of Parameter: BYTE or WORD.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT.

 “HighVal” - High Limit in In Limit Check.
 Type of Parameter: BYTE or WORD.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT.

 “Rslt” - The result value for In Limit Check. The Rslt var is
 Reset (False-0) if FrstVar is greater than low value
 LowVal and less than high value HighVal. The Rslt
 var is
 Set (True - 1) otherwise.
 Type of Parameter: BIT.
 Location For the Parameter: OUTPUT or MEMORY.

 LIM Usage is equivalent to the following BCON S program:
 LD FrstVar
 LT LowVal
 LD FrstVar
 GT HighVal
 OR
 STN Rslt

Stack Depth for macro - 2 BYTEs

Example:

 Main:

 BIT Alarm
 LIM bi02,bc16#0f,bc11,Alarm
 // If byte input 02 is Greater than 16 or less
 // than 11, than set Alarm
 EP

3.6

 B-CONW
Programming

Jump Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

91

6 Jump Instructions

Jump instructions enable the interruption of the running program and its resumption at the target jump label, which has to be
declared as a parameter in the jump instruction.

There are two groups of jump instructions:

- unconditional jump and
- jump dependent on a condition

3.6.1 Unconditional Jump

JMP Jump.
The JMP instruction continues the execution of the command in the place where its jump label is before an instruction in the
program.
The execution of the JMP command does not depend on a condition. So the previous history, i.e. the stack contents, is irrelevant to
the execution of the command.

Declaration of the instruction:

The jump label can have a length of 8 characters. The first character must be a letter. The other characters can be letters and/or
figures. The definition of the label has to be terminated by a colon (:).
After the execution of the command the stack contents and depth as well as the ACC contents are unchanged.

Programming example:

 JMP LABEL1 /unconditional jump to LABEL1

 P_JMP.pgm
 /example: „JMP“ - unconditional jump

 label0:
 ld m10.0 /jump target „label0“
 xor i0.1
 st o0.0
 jmp label2 /unconditional jump to „label2“

 label1: /jump target „label1“
 ld i1.0
 o i1.1
 st o0.7
 jmp label0 /unconditional jump to „label0“

 label2: /jump target „label2“
 ld o0.0
 and i0.2
 st m10.0
 ep

3.6

 B-CONW
Programming

Jump Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

92

3.6.2 Conditional Jump

JMPC Conditional jump, log. 1 ("True")
The JMPC instruction resumes the execution of the program in the place where its jump label is before an instruction in the
program.
The execution of the jump instruction depends on the condition that the ACC contents takes the Boolean value „true“, i.e. log1, as
the result of previous operations. So the previous history, i.e. the ACC contents, is relevant to the execution of this command.

Declaration of the instruction:

The jump label can have a length of 8 characters. The first character must be a letter. The other characters can be letters and/or
figures. The label definition has to be terminated by a colon (:).
After the execution of the command the former ACC contents are lost and a new value is automatically loaded from the stack into
the ACC. The stack has changed. Its depth is incremented.

The conditional jump instruction can only be derived from an operation which created the ACC contents in bit format.

Programming example:

 JMPC LABEL1 /jump to LABEL1 on condition „true“

 /P_JMPC.PGM
 /example: „JMPC“ jump on condition „true“

 label0: /jump target „label0“
 ld i0.0
 xor i0.1
 st m10.0
 ld m10.0
 jmpc label2 /jump to label2 if ACC „true“

 label1: /jump target „label1“
 ld m10.0
 or i1.1
 st o0.7
 jmp label0 /unconditional jump to „label0“

 label2: /jump target „label2“
 ld m10.0
 st o0.0
 ep

3.6

 B-CONW
Programming

Jump Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

93

JMPCN Conditional jump, Log.0 („false“).

The JMPCN instruction resumes the execution of the command in the place where its jump label is before an instruction in the
program.
The execution of the JMPCN instruction depends on the condition that the ACC contents take the Boolean value „false“, i.e. log.0,
as a result of previous operations. So the previous history, i.e. the contents of the ACC, is relevant to the execution of this
command.

Declaration of the instruction:

The jump label can have a length of 8 characters. The first character must be a letter. The other characters can be letters and/or
figures. The definition of the label has to be terminated by a colon (:).
After the execution of the instruction the former ACC contents are lost and a new value is automatically loaded from the stack into
the ACC. The stack has changed. Its depth is incremented.

The conditional jump instruction can only be derived from a previous operation which created the ACC contents in bit format.

Programming example:

 JMPCN LABEL1 /jump to LABEL1 on condition „false“

 /P_JMPCN.PGM
 /example: jump on condition „false“

 label0: /jump target „label0“
 ld i0.0
 xor i0.1
 st m10.0
 ld m10.0
 jmpcn label2 /jump to „label2“ if...
 /ACC contents „false“ (log.0)

 label1: /jump target „label1“
 ld m10.0
 or i1.1
 st o0.7
 jmp label0 /unconditional jump to „label0“

 label2: /jump target „label2“
 ld c0
 st o0.7
 ep

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

94

3.7 Auxiliary / Special Instructions

Duplicate Instructions
Duplicate instructions provide for the programmer the opportunity to temporarily store the ACC contents direct or by manipulation
(negation) into the stack in order to re-enter this value in further operations.

3.7.1 Duplicate

DUP Duplicate.
The DUP instruction duplicates the current ACC contents into the stack. The parameter following the command defines the data
format to be processed (bit, byte or word). It must be in accordance with the preceding load operation.

All operand formats and types are permitted.

The execution of the instruction causes the current ACC contents to be duplicated (copied) into the stack. After the operation it is
simultaneously available in the ACC and in the stack. The stack depth is decremented because the ACC contents was batched.

Declaration example in byte format:

 LD BC4 /load constant of value 4 into ACC
 DUP B /duplicate ACC value into stack

Programming example:

 /P_DUP.PGM
 /example: DUP = duplicate the ACC value into the stack
 /task: 4+4=8
 ld bi0 /OP1: = e.g. 04h
 dup b /duplicate 04h into stack as OP2
 add b /add OP1 to OP2
 st bo0 /RESULT: = 8
 ep

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

95

DUPN Duplicate with negation.
The DUPN instruction duplicates the inverted current ACC contents into the stack.

The parameter following the command defines the data format to be processed (bit, byte or word). It must be in accordance with the
preceding load operation.

All operand formats and types are permitted.

The execution of the instruction causes the inverted current ACC contents to be duplicated (copied) into the stack. Thereby the
unchanged ACC contents and the corresponding inverted value in the stack are available after the operation for further use. The
stack depth is decremented because the ACC contents was batched.

Note: Constants cannot be inverted!

Declaration example in byte format:

Programming example:

DUP(...) Duplicate with nesting.
The DUP instruction with command nesting in brackets executes the duplication of the operation result resulting from the command
nesting in brackets according to priority rules.
All operand formats and types are permitted.

Declaration example:

The sequence of the execution of the instruction is this: First the operations declared in the bracket are executed.

Example: Execution of DUP(...) instruction:

 Program listing Sequence of execution Coments
 DUP(C1
 AND I0.1
)

 LD C1
 LD I0.1
 DUP

/result AND conjunction is
/duplicated into stack
/

 LD BI0 /load input byte 0 e.g. 80h into ACC
 DUPN B /duplicate value 7Fh into stack

 /P_DUPN.PGM
 /example: DUPN = duplicate the ACC value negated
 /into the stack
 ld i0.0 /OP1: = e.g. „1“
 dupn /OP2: duplicate „1“ as „0“ into stack
 and /XOR conjunction OP1 with OP2
 st o0.0 /RESULT: = „1“
 ep

 DUP(I0.2 /AND conjunction I0.2 with I0.3, result of the
 And I0.3 /bracket is duplicated into stack
)

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

96

Programming example:

DUPN(...) Duplication with negation and nesting.
The DUPN instruction with command nesting in brackets duplicates the negated operation result resulting from the command
nesting in the bracket according to priority rules.

All operand formats and types are permitted.

Declaration example:

The sequence in the execution of the instruction is this: First the operations in the bracket are executed.

Example, execution of DUP(...) instruction:

 Program listing Sequence of execution Coments
 DUPN(C1
 AND I0.1
)

 LD C1
 AND I0.1
 DUPN

/result AND conjunction is
/duplicated into stack
/

Programming example:

 /P_DUPPP.PGM
 /example: DUP(...) = duplicate conjunction of bracket
 /as ACC value into stack
 /for the assumption of the variable value cf. comment lines

 dup i0.0 /load log. 1 and carry out AND conjunction
 and i0.1 /with log. 1
 (/load result into stack
 st o0.0 /RESULT1: = log. 1
 ld i0.2 /log. 0
 and
 st o0.7 /RESULT2: = log.0
 ep

 DUPN(I0.2 /AND conjunction I0.2 with I0.3, inverted result of
 AND I0.3 /the bracket is duplicated into stack
) /

 /P_DUPNPP.PGM
 /example: DUPN(...) = duplicate negated and conjunction
 /of bracket expression of the stack with i0.2
 /for the assumption of the variable value cf. comment line

 dupn(i0.0 /load log.1 and AND conjunction with
 and i0.1 /log.0
) /load result into stack
 st o0.0 /RESULT1: = log. 1
 ld i0.2 /log. 1
 and /stack operand (RESULT1)
 st o0.7 /RESULT2: = log. 1
 ep

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

97

3.7.2 No Operation Instruction

NOP No operation.
The NOP command is a special instruction of command size. It causes no operational activities and has the function of a
placeholder for planned instructions.

Declaration example:

3.7.3 End of Program Instruction

EP End of program.
The EP command is an instruction that indicates the end of the program.
Every program must be terminated by „EP“.

The EP command can be applied only once in a program.

Declaration example:

 NOP /no operation

 EP /end of program

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

98

3.7.4 Move Instructions

MOV Move Value

MOV (macro) moves from source to destination.

Usage:
 MOV SrcVar DstVal
 MOV SrcVar,DstVal

Number of parameters: 2.

Parameters description:

 “SrcVar” - Source variable from where the value is moved.
 Type of Parameter: BYTE or WORD or BIT.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT.

 "DstVar" - Destination variable where the value is moved.
 Type of Parameter: BYTE or WORD or BIT.
 Location For the Parameter: OUTPUT or MEMORY.

MOV usage is equivalent to the following BCON S program:

 LD SrcVar
 ST DstVar

Stack Depth for macro - 2 BYTEs

Examples:

MVM Move Masked

Move a value from masked source to destination.

Usage:
 MVM FrstVar MSK LowVal
 MOV FrstVar,MSK,LowVal

Number of parameters: 3.

Parameters description:

 “SrcVar” - Source variable from where the value is moved.
 Type of Parameter: BYTE or WORD or BIT.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT

 Main:
 MOV BC22,BM55 // Move constant byte 22 to byte memory location 55
 MOV BM22,BM55 // Move byte memory location 22 to byte memory location 55
 MOV WM22,WO55 // Move word memory location 22 to word output location 55
 EP

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

99

 “MSK” - The mask used in Move Masked MVM.
 Type of Parameter: BYTE or WORD or BIT.
 Location For the Parameter: INPUT or OUTPUT or
 MEMORY or CONSTANT
 “DstVar” -Destination variable where the value is moved.
 The destination variable DstVar is equal to SrcVar &
 MSK.
 Type of Parameter: BYTE or WORD or BIT.
 Location For the Parameter: OUTPUT or MEMORY.
 MVM Usage is equivalent to the following BCON S program:
 LD SrcVar
 AND MSK
 ST DstVar

Stack Depth for macro - 2 BYTEs

Examples:

 Main:
 MVM BM33,BC22,BM55 // Get byte memory 33, mask with constant byte 22
 // and move to byte memory location 55
 MVM BM33,BI22,BM55 // Get byte memory 33, mask with byte input 22
 // and move to byte memory location 55
 EP

3.7.5 BLOCK MOVE (Remote Master and B-CON Master only)

The COPYB and COPYW instruction can be used to move multiple bytes or words from one I/O or memory area to another, e.g.:
moving all inputs from one slave to outputs on another slave.

COPYB Move Multiple Bytes.

To copy a number of bytes you can use command

COPYB byte_source, Byte_destination, Byte_count

Example:

Main:
 copyb bio, bm10, bc5
 EP

Copies 5 bytes from input 0 to memory 10

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

100

COPYW Move Multiple Words.

To copy a number of words you can use command

COPYW word_source, word_destination, Byte_count

Example:

 Main:
 copyw S2wi4000, S3wo4000, bc20
 EP

Copies 20 bytes (10 words) from slave 2 to slave 3 (ZI0-ZI9 to ZO0-ZO9).

3.7.6 Function / Subroutines

A subroutine (function) is defined as program organisation unit which, when executed, yields exactly one data element. Function
do not contain any internal state information, i.e. invocation of a function with the same arguments will always give the same result
/ output.

Declaration:
FUNCTION <FUNC_TYPE> <FUNC_NAME> (TYPE>Par1, <TYPE> Par2,..,<TYPE> Par6)

 The keyword is FUNCTION,
 followed by TYPE identifier, specifying type of the value returned by the function,
 followed by NAME identifier, specifying the name of the function, declared,
 followed by an opening parantezis followed by function‘s input parameter(s) with them types and closing parantezis.
 A function body, must specify the operations to be performed upon the input parameter(s).
 An optional operator RET is used to return control to calling program, before reaching terminating keyword.
 The terminating keyword is ENDFUNC.

The function return value is of FUNCTION type and is returned as current result in Accumulator.
Function type <FUNC_TYPE> can be: VOID, BIT, BYTE and WORD
Function parameters can be maximum 6.

Maximum 8 functions can be defined.
The function works with a copy of formal parameters, so the value of actual parameters is not changed.
Functions are not re-entrant, but one function can call another.
Functions are invoked via the CALL operator as follows:

CALL FUNC_NAME (list of actual parameters)

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

101

Programming Example 1

 #define temp bm 10

 #define tempw wm 11

 function byte inc (byte argw)

 ld argw

 add bc1

 endfunc

 function word power (word argw, byte pow)

 ld pow

 lt bc0

 jmpcn cont

 ld wc0

 ret

 cont:

 ld pow

 eq bc0

 jmpcn cont1

 ld wc1

 ret

 cont1:

 ld argw

 st tempw

 ld pow

 st temp

 loopp:

 ld temp

 sub bc1

 dup b

 st emp

 eq bc0

 jmpc endf

 ld tempw

 mul argw

 st tempw

 jmp loopp

 endf:

 ld tempw

 endfunc

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

102

//* *//

 main:

 call inc (bo0)

 st bo0

 call power (wi0, bo0)

 st wo2

 ep

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

103

Programing Example 2

 /EXAMPLE using subroutines
 /use 1 UCB-16DIO master plus 1 UCT-42 display

 /function „scale“ converts 12 bit analog input to scale 0-100
 /the function is defined in the 5 next instruction lines below

 function word scale (word input)
 ld input /input parameter
 mul wc8
 div wc327
 endfunc /end of function (return)

 /function „and4“ and’s 4 inputs and returns the result
 /the function is defined in the 6 next instruction lines below

 function bit and4 (bit inputa, bit inputb, bit inputc, bit inputd)
 ld inputa /input 1
 and inputb /input 2
 and inputc /input 3
 and inputd /input 4
 endfunc /end of function (return)

 main:

 mov m.wi0 dis.wo4000 /select text no.
 call scale (m.wi2000) /subroutine
 st dis.wo4002 /display value

 call and4 (i0.0 i0.1 i0.2 i0.3) /call subroutine
 st o0.0 /store output
 ep

3.7

 B-CONW
Programming

Auxilliary / Special Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

104

3.7.8 Special Instructions

CODE Insert Assembler Code in Program

Code is used for special purpose if a user function which not already supported by the instructions in B-CON should performed.
Code uses normal assembler code instructions available for the 8051-family micro controllers.
For detail information refer to data material for the micro controller.

Number of parameters: less than 7.

Usage:
 CODE Par1 [Par2 ...[Par7]]

Parameter description:

“ParX” - Code to be inserted in the program.
 Type of the Parameter: BYTE or WORD
 Location For the Parameter: CONSTANT.

Stack Depth - depends on user definition, but no stack increase
 or decrease is enabled.
WARNING: The assembler instruction must complete in one line.
 Using assembler code should be handled with care as it can easily cause disarstarous operation if not
 knowing exactly how and what to do.

Examples:

 Main:
 LD WC0
 ST WM33
 CODE BC16#12 WC16#9000 // LCALL 09000h
 CODE BC16#90 WC16#2000 // Mov dptr,#2000h
 CODE BC16#0E0 // Movx a,@dptr
 CODE BC4 // Inc a
 CODE BC16#0f0 // Movx @dptr,a
 EP

3.7

 B-CONW
Programming

Log Instruction

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

105

LOG Log instruction (Brodersen RTU8/RTU-COM and BITBUS DL slaves)

The RTU8 module includes a log buffer which works as a ring buffer (FIFO).

All types of inputs and outputs as well as memory markers can be logged either cyclicly (time trigged) or on certain conditions
(event trigged).
The logging is carried out Wordwise. E.g. WI0 or WM43.

The RTU8 includes a real time clock and the Memory marker BM17 includes time triggers:

 M17.0 0.1 second
 M17.1 1 second
 M17.2 10 seconds
 M17.3 1 min.
 M17.4 10 min
 M17.5 1 hour
 M17.6 10 hours

The Syntax for the LOG instruction is:

 log <trigger>,<logid>,<first word to log>,<number of words to log>

Trigger: When “trigger” has the value boolean 1, the
 logging starts.

Logid:
 Is the “identifier” of the log and can have a
 constant value from 0 to 31.

First word to log: Is the first Input word, Output word or
 Memory marker word which will be logged
 with the chosen log identifier.

Number of words
to log:
 Is the total number of words including “first
 word to log” to log. Maximum is 120 words.

Programming example:

 main:

 /Event log
 log i0.0, bc0,wi2000,bc4
 /Logs the first 4 Analogue inputs each time
 input i0.0 is activated.

 /Cyclic log
 log m17.3,bc1,wi0,bc1
 /Logs the first digital input word every
 minute
 .
 .
 ep

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

106

3.8 TIMERS (Only in slaves – BITBUS slaves and RTU8/RTU-COM/RTU-870)

TMRx Timer is a routine integrated in the operating system of B-CON S Controllers. It does not produce a return code.

The invitation is carried out by a function name and necessary arguments as pass parameters. The function name consists in a
short format followed by the arguments. The arguments are put in brackets (not compulsory!) and separated from each other by
separator characters such as comma or SPACE.

The TMRx functions provide the opportunity of a single function invitation by being declared in an initializing part.

The general function cue has the following form:

 F_name [(][arg1[,arg2[,...,argn]]][)]

Explanations:

F_name function name for inviting and executing the
 function

 arg1,arg2,...argn function arguments prescribed by the
 corresponding function

 [...] elements in these brackets are optional
 arguments of a macro

TMRx - Universal timer.
(Pulse Timer, On-Delay Timer, Off-Delay Timer)
This function creates up to 4 timers which work independent of each other. Each timer can be selected for a special function task.
One can choose among 3 function types of timers which can be configured in the argument TYPE by the selection of a figure.

The following sequence is necessary:

 TMRx Type Inp Out UpVal

TMRx function name for timer.
 x = index of No, to select between 1 and 4
 number: 4

Type defines the type of the timer
 Type = 0 —> edge recognition
 Type = 1 —> on delay
 Type = 2 —> off delay
 data format: byte
 data type: constant

Inp activation input of the timer
 data format: bit
 data type: input, output, marker

Out timer output
 data format: bit
 data type: output, marker

UpVal delay time (time value)
 data format: word
 data type: marker, constant
 measuring unit: 10ms step
 value range: 0...65535

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

107

As described above the timer function allows the definition of up to 4 timers in a program. By their type assignment they can be
configured for different tasks. Their working is simultaneous.
In the following programming example the simultaneous operation of the 3 different timer types is illustrated:

Programming example:

 /P_TMR:PGM
 Function: timer in simultaneous operation

 #define type0 bc0 /timer as edge recognition
 #define inp0 i0.0 /signal input
 #define out0 o0.0 /signal output
 #define upval0 wc100 /pulse duration = 1000 ms (100x10)

 #define type1 bc1 /timer as on delay
 #define inp1 i0.1 /signal input
 #define out1 o0.1 /signal output
 #define upval1 wc150 /pulse duration = 1500 ms (150x10)

 #define type2 bc2 /timer as off delay
 #define inp2 i0.2 /signal input
 #define out2 o0.2 /signal output
 #define upval2 wc200 /pulse duration = 2000 ms (200x10)

 /———————————program————————————

 tmr1 type0 inp0 out0 upval0 /timer1 as edge recognition
 tmr2 type1 inp1 out1 upval1 /timer2 as on delay
 tmr3 type2 inp2 out2 upval2 /timer3 as off delay
 ep

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

108

3.8.1 Edge Recognition

TMR Timer type 0.
By type selection TYPE = 0 the timer assumes the function of an edge recognition.

A positive edge (0 - 1 jump) at the input INP starts the timer. The output OUT is switched active (log. 1) and the internal counter
starts counting up. When the current counter reading reaches the declared delay time UPVAL (CVal = UPVAL), the output gets
inactive (log. 0).

Thus a positive edge at the input generates a single pulse of a pulse duration that is defined by UPVAL.

The resetting of the internal counter is dependent on the input pulse duration. The pulse diagram illustrates these processes.

Pulse diagram:

CVal

t
0

t
1

UpVal

t t
2 3

UpVal

Inp

Out

TMRx Type = 0

UpVal

t
4

t
5

Example of a function :

 TMRx BC0 I0.0 O0.0 WC100

Timer No 1 is configured for the function of edge recognition. A positive edge at input I0.0 creates a single pulse at output O0.0 of a
pulse duration of 1000 ms (100x10=1000 ms).

Programming example:

 /P_TMR10.PGM
 /Function: timer as edge recognition
 /in a positive edge recognition a single
 /output pulse of 1000ms is created

 #define type bc0 /timer as edge recognition
 #define inp i0.0 /signal input
 #define out o0.0 /signal output
 #define upval wc100 /pulse duration = 1000ms (100x10)
 /—————————program———————————————
 tmr1 type inp /timer 1 as
 ep out upval /edge recognition

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

109

3.8.2 On Delay

TMR Timer type 1.
By type selection TYPE = 1 the timer assumes the function of an on delay.
With a positive edge (0 -1 jump) at the input INP the on delay of the timer starts to work. The signal at the output OUT is switched active (log. 1) only
when the internal counter (CVal) has reached the declared time value UPVAL (CVal = UpVal). In the further pulse process, the output signal follows
the input signal.

The internal counter is reset when the input signal gets log. 0. The pulse diagram illustrates these processes.

Pulse diagram:

CVal

t
0

t
1

UpVal

t t
2 3

UpVal

Inp

Out

TMRx Type = 1

UpVal

t
4

t
5

Example of a function:

 TMR2 BC1 I0.1 O0.1 WC150

Timer No 2 is configured for the function of on delay. A signal pulse at input I0.1 creates a delayed switching pulse at output O0.1
with a delay of 1500 ms (150x10 = 1500 ms).

Programming example:

 /P_TMR21.PGM

 /Function: timer as on delay

 /with a positive edge the output

 /gets active with an on delay of 1500 ms

 #define type bc1 /timer as on delay

 #define inp i0.1 /signal input

 #define out o0.1 /signal output

 #define upval wc150 /pulse duration = 1500 ms (150x10)

 /——————————program——————————————

 tmr2 type inp /timer 2 as

 ep out upval /on delay

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

110

3.8.3 Off Delay

TMR Timer type 2.
By type selection TYPE = 2 the timer assumes the function of an off delay.

With a positive edge (1 - 0 jump) at the input INP the off delay of the timer starts to work.

First the signal at the output OUT follows the input signal. On the arrival of the negative edge at input INP the internal counter
(CVal) is started and the delay time begins running until the internal counter (CVal) has reached the declared time value UPVAL
(CVal = UPVAL). During this time the output signal is kept at log.1 and then turns to log. 0.

The internal counter is reset when the input signal gets log. 1. The pulse diagram illustrates these processes:

Pulse diagram:

CVal

t
0

t
1

UpVal

t t t
2 3 4

Out

Inp

Type =
TMRx

2

UpVal

t
5

Example of a function:

Timer No3 is configured for the function of an off delay. A signal pulse at input I0.2 creates a delayed off pulse at output O0.2 with a
delay of 2000 ms (200x10 = 2000 ms).

Programming example:

 /P_TMR32.PGM
 /Function: timer as off delay
 /with a positive edge the output
 /gets active with an off delay of 2000 ms

 #define type bc2 /timer as off delay
 #define inp i0.2 /signal input
 #define out o0.2 /signal output
 #define upval wc200 /pulse duration = 2000 ms(200x10)

 /——————————program——————————————
 tmr3 type inp /timer3 as
 ep out upval /off delay

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

111

3.8.4 Clock

CLOCK Clock Signal

Clock changes alternatively BitVar every time, the program pass through.

Usage:
 CLOCK BitVar

Number of parameters: 1.

Parameters description:

“BitVar”
 A bit variable, that changes it’s (from False - 0 to
 True -1 and vice versa) value every program pass.
 Type of Parameter: BIT
 Location For the Parameter: OUTPUT or MEMORY

CLOCK
 Usage is equivalent to the following BCON S program:
 LD BitVar
 STN BitVar
 Stack Depth for macro - 1 BYTE.

Example:

 Main:
 CLOCK Q0.5
 CLOCK M3.5
 EP

CLOCK_N Pulse Output

Clock_N is an asymmetrical clock with defined pulse/pause width
In a period NOCLH (Number Of CLocks High) times the program pass through CLOCK_N the output BitVar remains High
(True - 1), and
in a period NOCLL (Number Of CLocks Low) the output BitVar remains Low (False -0)

Usage:
 CLOCK_N NOCLH,NOCLL,CNTR,BitVar
 CLOCK_N NOCLH NOCLL CNTR BitVar

Number of parameters: 4.

Parameters description:

“NOCLH”
 Number of program passes high.
 Type of Parameter: WORD
 Location For the Parameter: OUTPUT or MEMORY or
 CONSTANT
“NOCLL”
 - Number of program passes low.
 Type of Parameter: WORD.
 Location For the Parameter: OUTPUT or MEMORY or
 CONSTANT

3.8

 B-CONW
Programming

Timers / Clock Instructions

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

112

“CNTR”
 - The location, where counting is done.
 Type of Parameter: WORD.
 Location For the Parameter: OUTPUT or MEMORY.

“OUT”
 - The output of Clock_N. It stays True (1) NOClH
 times program passes and False (0) NOClL times
 program passes.
 Type of Parameter: BIT.
 Location For the Parameter: OUTPUT or MEMORY.

CLOCK_N Usage is equivalent to the following BCON S program:

 LD CNTR
 SUB WC1
 DUP W
 ST CNTR
 LE WC0
 JMPCN EOM
 LD OUT
 DUP
 STN OUT
 JMPCN NO1
 LD NOTH
 ST CNTR
 JMP EOM
NO1: LD NOTL
 ST CNTR
EOM:

Stack Depth for macro - 4 BYTEs.

Example:

 Main:
 WORD CntrWrd1,CntrWrd2
 CLOCK_N WM33, WM55,CntrWrd1,O7.3
 CLOCK_N WC33,WC55,CntrWrd2,O7.3
 EP

3.9

 B-CONW
Programming

Counters

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

113

3.9 Counters

3.9.1 COUNTER UP

CNTUP

The macro creates an upward counter which sets the counter output to log. 1 on reaching a predefined counter value. The value
range of the upward counter applies to the signed positive 16-bit range, 0...+32767. In the function chart the relations are described
diagrammatically.

The following invitation sequence is necessary:

 CNTUP Clock,Reset,Count,UpValue,Output

Clock counter input which is triggered with positive signal edges.
 maximum frequency permitted: 35 Hz
 data format: bit
 data type: input, output or marker

Reset reset input which resets the counter (Count) with a positive signal edge
 data format: bit
 data type: input, output, marker, constant

Count
 counter memory containing the current count value, after a positive count impulse,
 the counter contents are incremented by 1.
 The argument is available to the user and can be changed during the operation.
 Data format: word
 Data type: output, marker

UpValue stop value which defines the count limit in counting up. On reaching this limit the output is set to log. 1.
 Data format: word
 Data type: input, marker, constant

Output Counter output which is set to log. 1 on reaching the stop value.
 (Count>= UpValue)
 Data format: bit
 Data type: output, marker

Temporarily the macro needs 2 bytes for its operation. They are stored temporarily in the stack. The user has to provide for this
required space in the stack before inviting the macro.
When there is no reset signal at the Reset input (reset = 0), the counter value (COUNT) is incremented by 1 with every positive
edge (0 - 1 jump) at the counter input (CLOCK).

When the condition COUNT >= UPVALUE is fulfilled, the counter OUTPUT is set to log. 1.

After a repeated reset the counter returns to its normal position by COUNT and OUTPUT being reset. A new count operation can
be started.

When more count impulses arrive at the counter input CLOCK after the stop value has been reached, the counting operation is not
stopped. On passing the value range limit of +32767 there occurs an error situation which creates the following changes in the
signal status:

 - the counter (COUNT) is set to a negative value
 - the counter output (OUTPUT) is reset to log. 0
 - the status bit MO.7 is set to log. 1

3.9

 B-CONW
Programming

Counters

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

114

Function chart:

ZV = counter up (Zähler Vorwärts)

(COUNT)

(OUTU)(RESET)

(UPVALUE)

(CLOCK)

i0.1

i0.0

wc5

R O

ZV

DUZW

CNTUP
L e g e n d :

ZW = counting value (Zählwert)

DU = dual inquiry (Duale Abfrage)

O = binary inquiry (Binäre Abfrage)

R = Reset

o0.0

wm1

Programming example:

 /P_CNTUP.PGM
 /counter up CNTUP
 /CNTUP Clock,Reset,Count,UpValue,Output
 /counting up from 0 to 5
 /
 #define clock i0.0/clock upward
 #define reset i0.1 /reset
 #define count wm1/count memory
 #define upvalue wc5/stop value
 #define output o0.0/control display

 cntup clock,reset,count,upvalue,output
 ld m0.7 /(status bit reports error on
 st o0.7 /(exceeding value range of
 ep /(>+32767

The counter up can also start from a defined start value which must be within the value range. For this purpose the argument
COUNT must take the corresponding start value in an initial part before the macro is invited.

Example:

 #define startwert wc5 /assignment starting value 5

 #define count wm1 /assignment counter memory

 ld startwert /(initialization of the

 st count /(start value e.g. 5

 mark1:

 cntup clock, reset, count,upvalue,output

 jmp mark1

 ep

To prevent counting after reaching the stop value, a logical ANDN conjunction of the counter input CLOCK with the counter output
(OUTPUT) is advisable. Thus count impulses arrive at the counter input only as long as counter output is log. 0.

Example:
 #define output o0.0 /assignment output
 #define clock1 i0.0 /assignment clock
 #define clock m10.0 /assignment clock latched

 ld clock1 /clock
 andn output /negated output signal
 st clock /clock latched
 cntup clock,reset,count,upvalue,output
 ep

3.9

 B-CONW
Programming

Counters

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

115

3.9.2 Counter Down

CNTDN
The macro creates a counter down which sets the counter output to log. 1 on reaching a predefined counter value. The value range
of the counter down applies to the signed positive 16-bit range, +32767...0. In the function chart the relations are described
diagrammatically.

The following sequence is necessary:

 CNTDN Clock,Load,Count,DnValue,Output

Clock counter input which is triggered by positive signal edgespermitted maximum frequency: 35 Hz
 data format: bit
 data type: input, output or marker

Load
 load input which takes over the DnValue (start - down value) in the counter (Count) with a positive signal edge
 data formnat: bit
 data type: input, output, marker, constant

Count counter memory which contains the current counter value.
 After a positive count impulse at the counter input CLOCK, the counter contents are decremented by 1.
 The argument is available to the user and can be changed during the operation.
 data format: word
 data type: output, marker

DnValue start value which defines the counting start for counting down
 data format: word
 data type: input, marker, constant

Output counter output which is set to log. 1 on reaching the counter value limit of 0000h (Count<=0000h)
 data format: bit
 data type: output, marker

Temporarily the macro needs 2 bytes for its operation. The user has to provide for this required space in the stack before calling the
macro.

The start value for counting down is taken over by the counter (COUNT) with a positive edge (0-1 jump) at the load input (LOAD).
With every positive edge (0-1 jump) at the counter input (CLOCK) the count value (COUNT) is decremented by 1.
When the condition COUNT <= 0000h is fulfilled, the counter output (OUTPUT) is set to log. 1.

After a repeated load impulse the counter is put back to its normal position by COUNT taking over the value of DNVALUE and
OUTPUT being reset. A new counting operation can be started.

When more count impulses arrive at the counter input CLOCK after reaching the stop value, the counting operation is not stopped.
There occurs an error situation which creates the following changes in the signal status:

 - the counter (COUNT) is set to a negative value
 - the counter output (OUTPUT) is reset to log. 0 when COUNT exceeds value - 32768

Function chart:

ZR = counter down (Zähler Rückwärts)

(COUNT)

(OUTU)(SET)

(DNVALUE)

(CLOCK)

i0.1

i0.0

wc5

S O

ZR

DUZW

CNTDN
L e g e n d :

ZW = counting value (Zählwert)

DU = dual inquiry (Duale Abfrage)

O = binary inquiry (Binäre Abfrage)

S = Set

o0.0

wm1

3.9

 B-CONW
Programming

Counters

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

116

Programming example:

 /P_CNTDN:PGM
 /macro - counter down CNTDN
 /CNTDN Clock,Load,Count,DnValue,Output
 /count down from 5 to 0

 /
 #define clock i0.0 /clock down
 #define load i0.1 /take over DnValue
 #define count wm1 /counter memory
 #define dnvalue wc5 /start value
 #define output o0.0 /control display

 cntdn clock,load,count,dnvalue,output
 ep

In order to avoid counting on after reaching the stop value of 0000h, the logical ANDN conjunction of counter input Clock with
counter output OUTPUT is advisable. Thus count impulses arrive at the counter input only as long as the counter output is log. 0.

Example:

 #define output o0.0 /assignment output
 #define clock1 i0.0 /assignment clock
 #define clock m10.0 /assignment clock latched

 ld clock1 /clock
 andn output /negated output signal
 st clock /clock latched
 cntup clock,reset,count,upvalue,output
 ep

3.9.3 Reversive Up-Down Counter

CNTUD

The macro creates a combined up-down counter which has separate clock inputs and counter outputs for counting up and down.
The value range of the combined counter applies to the signed positive 16-bit range, 0...+32767. In the function chart the relations
are described diagrammatically.

The following sequence is necessary:

 CNTUD ClockU,ClockD,Reset,Load,Count,LoValue,OutU,OutD

ClockU counter input for counter up triggered by positive signal edges permitted maximum frequency: 35 Hz
 data format: bit
 data type: input, output or marker

ClockD counter input for counter down triggered by positive signal edges permitted maximum frequency: 35 Hz
 data format: bit
 data type: input, output or marker

Reset reset input which resets the counter (COUNT) through a positive signal edge
 data format: bit
 data type: input, output, marker, constant

3.9

 B-CONW
Programming

Counters

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

117

Load load input which takes over the LoValue (start-count down value) in the counter (COUNT)
 data format: bit
 data type: input, output, marker, constant

Count counter memory containing the current counter value.
 After a positive impulse at the counter input ClockU, the contents of Count are incremented by 1.
 After a positive iimpulse at counter input ClockU, the contents of COUNT are incremented by 1.
 After a positive impulse at counter input ClockD, the contents of COUNT are decremented by
 1. The argument is available to the user and can be changed during the operation.
 data format: word
 data type: output, marker

LoValue start value which defines the start of counting down and simultaneously marks the stop value in counting up.
 When the up counter reaches this value, OutU is set to log. 1.

OutU counter output for the counter up. On reaching the stop value it is set to log. 1. (Count > LoValue) data format: bit

OutD counter output for the counter down. On reaching the stop value of 0000h it is set to log. 1. (Count <= 0000h)
 data format: bit
 data type: output, marker

Temporarily the macro needs 2 bytes for its operation. They can be intermediately stored in the stack. The user has to provide for
this required space in the stack before calling the macro.

Macro operation:
The value of LoValue (start value for counting down and stop value for counting up) is taken over by the counter through a positive
edge at the input LOAD (0 - 1 jump).

Counting up:
By a positive impulse on the input RESET, COUNT is set to 0000h. The stop value is predefined by LOVALUE. Counter impulses
arriving at the input CLOCKU increment the counter (COUNT) by one step each.

When the condition COUNT > LOVALUE is fulfilled, the counter output OUTU is set to log. 1.

Counting down:
A positive impulse at input LOAD sets COUNT to the value of LOVALUE. Thereby the start value for counting down is set. Count
impulses arriving at input CLOCKD decrement the counter (COUNT) by 1 step each.

When the condition COUNT <= LOVALUE is fulfilled, the counter output (OUTD) is set to log. 1

Combined operation:
When a counting operation, e.g. counting up, has been started, the counter (COUNT) is decremented by down clocks and vice
versa. Predefined threshold values, such as 0000h or LOVALUE, are represented by the outputs OUTU and OUTD respectively.
Reaching one of these threshold values does not inhibit the further counting of impulses.

With this combined counter one can choose freely between counting up and counting down.

Counter pulses that arrive after a stop value has been reached are not stopped. Dependent on the direction of counting there
occurs an error situation which creates the following changes in the signal status:

On exceeding the value range limit of +32767, the following changes in the signal status are created:

Counting up:
 - the counter (COUNT) is set to a negative value
 - the counter output (OUTU) is reset to log. 0
 - status bit M0.7 is set to log. 1

3.9

 B-CONW
Programming

Counters

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

118

Counting down:
 - the counter (COUNT) is set to a negative value
 - the counter output (OUTD) is set to log. 0 when COUNT exceeds the value of -32768

Function chart:

Programming example:

 /P_CNTUD.PGM
 /up - down counter CNTUD
 /CNTUD ClockU,ClockD,Reset,Load,Count,LoValue,Outu,OutD
 /counting up from 0 to 5
 /counting down from 5 to 0
 /
 #define clocku i0.0 /clock up
 #define clockd i0.1 /clock down
 #define reset i0.2 /RESET
 #define load i0.3 /loads LOVALUE
 #define count wm1 /counter memory COUNT
 #define lovalue wc5 /start value for DOWN
 #define outu o0.0 /control display UP
 #define outd o0.1 /control display DOWN

 cntud clocku,clockd,reset,load,count,lovalue,outu,outd
 ld m0.7 /(status bit: reports error for
 st o0.7 /(exceeding value range in
 ep /(counting up at > +32767

In order to avoid counting after reaching the stop values of 0000h and LOVALUE respectively, the logical ANDN conjunction of
counter inputs CLOCKU and CLOCKD with the corresponding counter outputs is advisable. Thus count pulses can only arrive at
the corresponding counter input as long as the counter output belonging to it is log. 0. Cf. the examples listed under CNTUP and
CNTDN.

3.10

 B-CONW
Programming

Triggers

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

119

3.10 Triggers

3.10.1 Reset Dominant Trigger

RTR

The macro creates an RS trigger (Reset - Set trigger) which resets the output dominant.

The following sequence is necessary:

 RTR Reset,Set,Output

All arguments are only permitted in bit format.

 Arguments Data types
 reset, set
 output

 inputs, outputs, markers, constants
 outputs, markers

The RTR output is defined in the following table:

Reset Set Output

0
1
0
1

0
0
1
1

previous history
0
1
0

The trigger is called resetting dominant because its Reset input takes priority over its Set input.

During the macro operation 1 bit is temporarily filed in the stack. It follows that the user must provide for enough space for at least 1
byte in the stack before calling the macro.

Function chart:

(RESET)

(SET)

I0.0

I0.1

(OUTPUT)
R

S

Q

RTR

O0.0

Programming example:

 /P_RTR.pgm
 /RTR = RS trigger, reset dominant
 /RTR Reset, Set, Output
 /
 #define reset i0.0 /Reset signal
 #define set i0.1 /Set signal
 #define output o0.0 /output as control display

 rtr reset, set, output
 ep

3.10

 B-CONW
Programming

Triggers

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

120

3.10.2 SET RS DOMINANT TRIGGER

STR

The macro creates an RS trigger (Reset-Set trigger) which sets the output dominant.
The following invitation sequence is necessary:

 STR Reset,Set,Output

All arguments are only permitted in bit format.

 Arguments Data types
 reset, set
 output

 inputs, outputs, markers, constants
 outputs, markers

The STR output is defined in the following table:

Reset Set Output

0
1
0
1

0
0
1
1

previous history
0
1
0

The trigger is called setting dominant because its Set input takes priority over its Reset input.

During the macro operation 1 bit is temporarily filed in the stack. It follows that the user has to provide for enough space for at least
1 byte before calling the macro.

Function chart:

(RESET)

(SET)

I0.0

I0.1

(OUTPUT)
R

S

Q

STR

O0.0

Programming example:

 /P_STR.PGM

 /STR = RS trigger, set dominant

 /STR Reset,Set,Output

 /

 #define reset i0.0 /reset signal

 #define set i0.1 /set signal

 #define output o0.0 /output as control display

 str reset,set,output

 ep

3.10

 B-CONW
Programming

Triggers

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

121

3.10.3 Positive Edge Recognition

UPLS
The macro recognizes a positive signal edge arriving at the signal input BITINP (rising edge or 0 - 1 jump) and thereupon creates a
single pulse.

The following sequence is necessary:

 BitInp,BitOut

BitInp signal input which creates through a positive signal edge (0 1 jump) a single pulse at the signal output (BitOut).
 permitted maximum frequency: 35 Hz
 data format: bit
 data type: input, output, marker

BitOut signal output which creates a single pulse depending on the signal input (BitInp) and the system clock of the control.
 data format: bit
 data type: output, marker

Temporarily the macro needs 2 bytes for its operation. They can be intermediately stored in the stack. The user has to provide for
this required space before calling the macro.

When a positive signal edge (0-1 jump) is recognized at the signal input (BITINP), the macro creates a single pulse with the next
system clock of the control. The duration of the pulse is defined by the duration of the system clock period. The pulse is available at
the signal output (BITOUT).

Pulse clock diagram:

Function chart:

Programming example:
 /P_UPLS.PGM
 /positive edge recognition
 /UPLS BitInp,BitOut

 #define bitinp i0.0 /signal input
 #define bitout o0.0 /control display impulse

 upls bitinp,bitout
 ep

3.10

 B-CONW
Programming

Triggers

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

122

3.10.4 Negative Edge Recognition

DNPLS
The macro recognizes a negative signal edge (falling edge or 1-0 jump) arriving at the signal input BITINP and thereupon creates a
single pulse.

The following sequence is necessary:

 DNPLS BitInp,BitOut

BitInp signal input which creates a single pulse at the signal output(BitOut) through a negative signal edge (or 1-0 jump
 respectively). Permitted maximum frequency: 35 hz
 data format: bit
 data type: input, output or marker

BitOut signal output which creates a defined pulse depending on the signal input (BitInp) and the system clock of the control.
 data format: bit
 data type: output, marker

Temporarily the macro needs 1 byte for its operation. It is intermediately stored in the stack. The user has to provide for this
required space before calling the macro.

When a negative signal edge (1-0 jump) is recognized at the signal input (BitInp), the macro creates a single pulse with the next
system clock of the control. The duration of the pulse is defined by the duration of the system clock. The pulse is available at the
signal output (BITOUT).

Pulse clock diagram:

Function chart:

3.10

 B-CONW
Programming

Triggers

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

123

Programming example:

 /P_DNPLS.PGM
 /negative edge recognition
 /DNPLS BitInp,BitOut

 #define bitinp i0.0 /signal input
 #define bitout o0.0 /control display impulse

 dnpls bitinp,bitout
 ep

 B-CONW

Index for section 3

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

124

Index

A
Accumulator ...20
ADD instructions...58
Address ..21
AI/AO..22
AND instruction ..45
Arithmetic instructions ..58
Assembler code..96

B
Block move...97
Break point ...16
Byte ..16

C
Clock...108
CODE Insert Assembler Code in Program100
Compare instructions ...66
Compiler errors...28
Constants ...24
COPYMultiple Bytes or Words.............................97
Counters...110
Counter down...112
Counter up..110

D
Data types ...16
Debug...11
Define ...21
Define directives...16
Delay ..106
DI/DO..21
DIV Divide ..64
DUP Duplicate..92

E
End of program...95
EQ Compare signed to equal...............................75
Equal compare ...95
Error/overflow ...23
Error Reports..29
Examples of B-CON programs34

F
Formats of operands..16
Function subroutines..98

G
Greater...66
GT Signed - Compare to „>“...66
GE Signed - Compare to „>=“.71

H
IEC 1131..15
Include ...19
Input ...21
I/O addresses...21

J
Jump instructions...15

K

L
Labels ..15
LE Signed compare to „<=“ ...79
Less..79
LIM In Limit Check...88
Load instructions (LD)..38
Load value ...38
Log instruction ...98
LT Signed compare to „>=“ ...83

M
Macros ...19
Markers ..23
MEQ Masked Equal...87
Move instructions...96
MUL Multiply ...62

N
No operation ..95

O
Off delay...107
On delay...106
Operator modifiers...18
OR Logical OR instruction ...48
Output ..21

 B-CONW

Index for section 3

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

125

P
Positive edge recognition...................................118
Programming commands.....................................17

R
Reset dominant trigger RTR116
Reset instruction...40
ROR Rotate ACC contents to the right56
RS Flip-Flop ...41
Runtime error ..33

S
Sample programs...37
Set instruction...40
Shift instructions ...56
Special insert..101
Stack...20
Store instructions (ST)..39
Store value ...39
Subroutines ..98
SUB Subtract instructions61
Symbolic names...34
System indicator...33

T
Timers...103
Triggers ..116

U
Up-down counter..113

W
Warning flags ...33
Word...23

X
XOR instruction ..51

Y
YI/YO..22

Z
ZI/ZO ..22

 B-CONW

Index for section 3

 Brodersen Controls A/S � Betonvej 10 � DK-4000 Roskilde � Denmark � Tel (+45) 4674 0000 � Fax (+45) 4675 7336

 34.07
 40008

126

