Eirik Hammer
Eilev Sivertsen

Analysis and implementation of
the IEC 61850 standard

Master’s Thesis, Spring 2008

Eirik Hammer
Eilev Sivertsen

Analysis and implementation of
the IEC 61850 standard

Master’s Thesis, Spring 2008

M. Sc. Thesis
Analysis and Design of the 61850 Standard

March, 2008

Written by:
s001740, Eilev Sivertsen

s011688, Eirik Hammer

Abstract

In many areas of engineering, interoperability is a goal when technical systems are
designed. This is true also for the domain of electrical engineering and in particular
for substation automation systems. The IEC61850 standard addresses this challenge
and is the focus of this thesis. The thesis analyses the IEC61850 standard and gives
an overview of its content. The analysis places the Brodersen RTU32 in relation to
the scope of the standard. A basic IEC61850 server is designed and implemented
for the RTU which runs under Windows CE. The system consists of an information
model and an information exchange model and is capable of basic client/server com-
munication. Basic services, such as reporting and logging are implemented which
allow a client such as a SCADA system to review historical data for a substation
and receive reports based on events in the substation. An SCL parser is included in
the implementation which allows a substation to be configured according to the SCL
configuration file format defined in the IEC61850 standard.

ii

Preface

This report is the documentation of a final thesis submitted for the degree Master of
Science in Engineering at the Technical University of Denmark, DTU. The thesis has
been carried out in cooperation with the Department of Informatics and Mathemat-
ical Modeling (IMM), Centre for Electric Technology (CET) and Brodersen Controls
A/S.

Bjarne Poulsen at IMM, Chresten Traeholt at CET and Ole Borgbjerg from Brodersen
Controls A/S have been supervisors for the thesis.

Recommended prerequisites for reading the report are a basic knowledge of software
engineering and substation automation.

The thesis has been carried out in the period September 3, 2007 to March 14, 2008.

Eirik Hammer
Eilev Sivertsen

Kongens Lyngby, 2008

1ii

Acknowledgements

First, we would like to thank our supervisor Bjarne Poulsen at IMM for great guid-
ance, inspiration and patience during the whole project. Second, we would like to
thank Chresten Traeholt at CET for feedback and advice. We would also like to thank
Ole Borgbjerg and Beggi Oskarsson at Brodersen Controls A/S for their cooperation,
feedback and availability. We also thank Brodersen Controls A/S for making a Broder-
sen RTU32 available for the whole duration of this project. Finally, we would like to
thank Preben Nyeng for valuable feedback and advice.

v

CONTENTS

1 Introduction 1
1.1 Background 1
1.1.1 About Brodersen Controls A/S. 1
1.1.2 TEC61850. e e 2
1.1.3 BrodersenRTUS32 3

1.2 Motivation e e 4
1.2.1 Motivation for the Authors 4
1.2.2 Motivation for the Company 5
1.2.3 Motivation for the Supervisors 5

1.3 Vision e e e e 5
1.4 Problem Statement, 6
1.5 Development Method 7
1.6 Aboutthereport 8
2 Analysis 9
2.1 Analysis of the IEC61850 standard 9
2.1.1 Basic Concepts of IEC61850 9
2.1.2 The IEC61850 Standard - Overview and Scope 11
213 DataModel. 15
2.1.4 Substation Configuration Description Language 16
2.1.5 Abstract Communication Service Interface 18
2.1.6 InformationModels, 20
2.1.7 Information Exchange 23
2.1.8 Communication 28

2.2 Analysisof Scenarios 30
2.2.1 Scenario 1: Event based singlealarm 30
2.2.2 Scenario 2: Event based double alarm 33
2.2.3 Scenario 3: Control physical output pulseon RTU 34
2.2.4 Scenario 4: Send alarm setpointtoRTU 35
2.2.5 Scenario 5: Event report of analogue input 35
2.2.6 Conclusion to Analysis of scenarios 36

2.3 Analysis of the Brodersen RTU32 36
2.4 Specification of Requirements 37

2.5

Conclusion e e, 38

3 Design 40
3.1 Architecture of Solution 40
3.2 Information Model 41
3.3 Information Exchange Model 44

3.3.1 Unbuffered Reporting 46
3.3.2 Buffered Reporting 46
3.3.3 Logging e e 47
3.3.4 ObserverPattern 48
3.4 Communication e 49
3.5 DeviceModel 51
3.6 Substation Module 52
3.7 SCL Configurationo, 54
3.8 Conclusion 54

4 Implementation 57
4.1 Implementation of IEC61850 System 57
4.2 Information Model, 59
4.3 Information Exchange Model 62
4.4 Communication Module 64
45 DeviceModule e 65
4.6 SubstationModule 66
4.7 Conclusion e e 68

5 Test 69
51 UnitTest e e 69
5.2 TestCases i i i e e e 69

5.2.1 GetDataDirectory, 70
5.2.2 GetDataSetDirectory 70
523 Logging e e e 70
524 Reporting e 70
5.2.,5 ConnectingtotheServer 71
5.3 Conclusion e 71

6 Conclusion 72
6.1 SummaryofResults. 72
6.2 Summary of Contributions 74
6.3 Discussion and Future Work 74

6.3.1 Improvements to the Basic IEC61850 Server Implementation . . 75
6.3.2 Additional IEC61850 Functionality 75

A Glossary 79

B Details of the IEC61850 Standard 82
B.1 List of Logical Node Groups 82

B.2 ACSI Classes and Their Services 82

C

SCL Test File

85

vii

LIST OF FIGURES

1.1 ABrodersen RTU32.0 4
1.2 Time Plan for Development Process 8
2.1 Conceptual modeling approach of the IEC61850 standard 10
2.2 TEC61850 communication profile placed inan RTU setup 13
2.3 IEC61850 communication profile placed ina LAN setup 14
2.4 The hierarchy of the IEC61850 datamodel 15
2.5 Information model and information exchange model of ACSI 18
2.6 The SCSMs of IEC61850 placed according to the OSI layers [8] 29
2.7 Sequence Diagram for Association 32
2.8 Sequence Diagram for GetServerDirectory 33
2.9 Sequence Diagram for SetURCBValues 33
3.1 Architecture of solution 41
3.2 UML Class Diagram for the information model module with attributes,
propertiesand methods 42
3.3 Elaborated sequence diagram for services GetServerDirectory and Get-
LogicalDeviceDirectory 44
3.4 UML Class Diagram for the information exchange model module with
attributes, properties and methods 45
3.5 Elaborated sequence diagram for reporting prior to server/client com-
munication L e e e e e e 47
3.6 Elaborated sequence diagram for buffered reporting from server to client 47
3.7 Elaborated sequence diagram for logging 48
3.8 UML Class Diagram for the general Observer design pattern 49
3.9 Methods of the communicationmodule 50
3.10 UML Class Diagram for the Device module with attributes, properties
andmethods 51
3.11 Sequence Diagram for update of data model based on changes in inputs 52
3.12 Sequence Diagram for update of RTU based on changes in outputs . .. 52
3.13 UML Class Diagram for the Substation module with attributes, prop-
ertiesandmethods 53

3.14 UML Class Diagram for the whole system 56

viil

LIST OF TABLES

2.1.1The file types of SCL as defined in [7]. All file types are in XML format,

but they contain different elements depending on their purpose. 17
2.1.2Example of types: The logical node MMXU. The recursive structure of

types DATA and data attributes is illustrated. 22
B.1.1List of Logical Node Groups 83
B.2.1Complete List of ACSI Classes and Their Services 84

B.2.2 . . e 84

CHAPTER 1

INTRODUCTION

In this chapter the background and motivation for focusing this project on the IEC61850
standard will be outlined. The vision for the project will be stated and also the struc-
ture of the report is briefly explained.

1.1 Background

In this section a brief introduction will be given to Brodersen Controls A/S, the IEC61850
standard and the Brodersen RTU32.

1.1.1 About Brodersen Controls A/S

Brodersen Controls A/S was founded back in 1970 when it was known as Brodersen
Teknik A/S. During the nearly 40 years since its founding, Brodersen Controls A/S
has developed into one of Europe’s leading designers and manufacturers of process
IT components. The head office is located in Denmark and there are also subsidiaries
in the United Kingdom, Germany and the United States.

Brodersen Controls A/S offer a wide range of products: RTU! modules for telemetry?
and data logging, communications modules for GSM, GPRS and Radio modems and
Fieldbus modules. They also offer products such as power supplies, timers, operator
panels and relays. These products and other solutions from Brodersen Controls A/S
are used in industries such as:

e Water distribution and wastewater
e Oil and gas

e Electric power distribution

1Remote Terminal Unit - explained in 1.1.3
2A technology that allows remote measurement and reporting of information of interest to the sys-
tem designer or operator

e Transportation (airport, railways, traffic control)
e Telecommunication

Brodersen Controls A/S became ISO 9001 certified in march 2005 [3].

1.1.2 IEC61850

Substation automation is essential in order to maintain an efficient and reliable elec-
trical infrastructure. The IEC61850 standard is developed to make this automation
interoperable and cost-efficient. The IEC61850 standard has a number of benefits
compared to previous standards which are often referred to as legacy standards.
These can be described as ’artifacts of the eigthies’ - the time in which many of them
were developed. The communication protocols of these legacy standards were devel-
oped for serial link technology and were later adapted to run over TCP/IP-Ethernet
[18]. From the start, one of the objectives of the legacy protocols was to account
for bandwidth limitations by minimizing the number of bytes sent. Many of these
protocols were proprietary and thus communication between devices from different
vendors was generally not possible.

From the start, the IEC61850 standard was designed to operate over modern net-
working technologies. Interoperability is ensured by the standard and many features
are included which it would be impossible to include using previous standards.

Compared to legacy standards, a few of the specific benefits of the IEC61850 standard
include the following features:

e Every element of data is named using descriptive strings whereas legacy proto-
cols often use storage location and register numbers to identify data

e The communication protocol supports GOOSE2, GSSE4, SMV® and many other
services not supported in legacy protocols

e The standard includes a standardized configuration language for substations,
SCLS®, which uses XML’ files for the configuration of a device and removes am-
biguity issues in previous standards

3Generic Object Oriented Substation Event - an abstract data model mapping in the communica-
tions protocol

4Generic Substation Status Event

5Sampled Measured Values

6Substation Configuration Language

"Extensible Markup Language - Widely used markup language which facilitates sharing of struc-
tured data across platforms, typically over the Internet

e The use of GOOSE and GSSE over LAN8 removes the need for wiring separate
links for each relay, thus lowering installation costs

e The use of a single merging unit supporting SMV lowers transducer and main-
tenance costs

e Less manual configuration is needed for client applications and devices, reduc-
ing errors and lowering commissioning cost [18]

1.1.3 Brodersen RTU32

RTU is short for Remote Terminal Unit. An RTU is a microprocessor controlled elec-
tronic device used in e.g. SCADA? systems for collecting telemetry data and trans-
mitting them to a central server. The RTU itself is installed at the remote location as
the name indicates. An RTU can also receive commands from the central server and
issue these to the remote system. RTUs are generally equipped with input channels
for sensing or metering, output channels for control, indication or alarms and a com-
munication port.

The Brodersen RTU32 is a new and advanced RTU which combines the functional-
ity and performance of telemetry RTUs, PLCs!? and industrial PCs. It is based on
a 32-bit 300MHz CPU and runs the Windows CE 5.0!! operating system and thus
it is flexible with regard to installing industrial and utility applications. It also has
the Straton development tool which contains a virtual machine and an IDE!2. This
enables the user of the RTU to write his or her own applications in the five languages
supported by the IEC61131-3 standard!?, and test and run these applications on the
RTU.

In order to make the RTU32 compatible with PLCs and flow computers as well as
communication networks, it has been designed to support several protocols such as
SNMP!4, TCP/IP'® and the IEC60870-5-101/104 utility protocol. SNMP, for instance,
is used by network management systems and allows monitoring of devices attached
to a network. Network and SNMP settings, as well as other general settings on the

8Local Area Network
9Supervisory Control And Data Acquisition
0Programmable Logic Controller - a small special-purpose computer used to automate machines
HwWindows CE is a variation of Windows designed for minimalistic computers and embedded sys-
tems
PIntegrated Developers Environment
13Standard for PLCs. This particular part deals with programming languages of PLCs and the
five languages are: Ladder diagram, Function block diagram, Structured text, Instruction list and
Sequential function chart
14Simple Network Management Protocol
15Transmission Control Protocol/Internet Protocol

RTU32, can be configured via the Ethernet network interface either locally or re-
motely by using a web browser[4].

For input and output, the RTU32 is equipped with 16 digital inputs, 4 relay outputs, 4
analogue inputs and 2 analogue outputs. Furthermore it can be easily extended with
extension modules which can have various combinations of extra input and output
channels. An RTU32 can be seen in figure 1.1.

Figure 1.1: A Brodersen RTU32

1.2 Motivation

There are several reasons why the IEC61850 standard was chosen as the subject
for this master thesis project. In this section some of the motivating factors for the
authors, for the collaborating company Brodersen and for the supervisors will be out-
lined.

1.2.1 Motivation for the Authors

Software development may be exciting and interesting by itself, but generally its
value does not really materialise before it performs some useful, practical task which
would otherwise be infeasible to have performed. Therefore, a software engineer is
often going to work closely together with experts in other fields, who have an interest
in obtaining software that makes their task easier. For such a piece of software to
become efficient, it is sometimes required that the software engineer have a thorough

understanding of the domain in which the software is to be used. By choosing this
project, the authors have also chosen to work with the domain of electrical engineer-
ing and the IEC61850 in particular. Since there is a great deal of new development in
this area, it is likely that working with this project could give a professional knowl-
edge of the field of electrical engineering which could benefit a future career. Also,
the complexity of the domain will be a challenge during the project.

Most students at DTU plan to get a job at some company after finishing the studies.
During the studies one often becomes used to solving certain academical tasks, which
have been designed to teach the students some particular piece of theory. When work-
ing in a company outside the four quadrants of DTU, tasks are often very different
from what a student is used to. Collaborating with Brodersen on a project like this
will likely serve to bridge the gap between studies and a professional career.

1.2.2 Motivation for the Company

Since Brodersen Controls A/S is engaged in manufacturing products and solutions
used in electric power distribution, such as RTU modules for telemetry and data
logging, it is a natural step to incorporate a standard like IEC61850 into their range
of products. Hereby they can demonstrate that their RTUs are capable of fulfilling the
role of a central component in the IEC61850’s new communication structure which
experts agree will be the most widely used in this field in the future.

1.2.3 Motivation for the Supervisors

DTU is involved in a large research project, called NextGen [5], concerning dynamic
markets in networks of virtual power plants. The goal of the project is to integrate
the electricity system with information systems allowing electricity to be produced
and controlled in a decentralised manner compared to today. The vision is that this
is how electricity will be produced for the coming generation. The supervisors for this
project are also part of this larger research project. In virtual power plant networks
and the NextGen project, the IEC61850 standard is essential, since it prescribes how
the communication in such networks takes place. The IEC61850 standard has been
pointed out as the the basis of the communication profile in the NextGen project.

1.3 Vision

For this project the vision of the authors is to give an overview of the IEC61850 stan-
dard and to implement a suitable part of an IEC61850 server on a Brodersen RTU32.
The task consists of two quite different parts, where first a thorough analysis of the

standard must be made so that a helpful overview can be presented to Brodersen.
Second, a server must be designed and implemented on the RTU which complies
with the standard and can make basic IEC61850 server functionality available to a
SCADA system.

The vision of Brodersen Controls A/S is that the project might contribute to the devel-
opment of one of the company’s strategic hardware platforms used as a component for
supervision and control of power transmission networks and substation automation.

In more detail, Brodersen want the project to help them

e gain insight into how the IEC61850 standard can be practically applied and
interpreted

e place the RTU32 as a component in the new communication structure implied
in the IEC61850 standard

e implement a basic IEC61850 server on the RTU32 Windows CE platform with
well-defined interfaces for

— configuration of a server driver (such as API'6, file etc)

- read/write physical and virtual/internal input/output in RTU32 low level
database WTOOL32.dll (in Win32)

e test an IEC61850 server in RTU32 against a ZenOn SCADA Client for evaluat-
ing performance

A number of cases have been provided by Brodersen Controls A/S to illustrate sce-
narios for which the final product might be used. These scenarios will be presented
in section 2.2. Along with the scenarios, the vision of the authors and the vision and
detailed wishes of Brodersen Controls A/S will be used as an inspiration to prepare a
problem statement in the following.

1.4 Problem Statement

This project has two separate dimensions in that it consists of an analysis and an
implementation of the IEC61850 standard. The analysis of the standard is neces-
sary both in order to provide the desired overview of its content and scope, and also
with regard to beginning to make an implementation of the standard. The overall
task can be described as easing Brodersen’s employment of the IEC61850 standard
on their RTU32 by providing a useful overview of the contents of the standard and
constructing a generic implementation of a suitable part of the standard that can be

16 Application Programming Interface

easily extended or modified according to the needs and wishes of the company.

Because of the comprehensive nature of the IEC61850 standard, a suitable demar-
cation is necessary to pinpoint the focus area of the software implementation of this
project. This will be given in the specification of requirements in section 2.4, follow-
ing a thorough analysis of the standard in chapter 2. The part of the standard that
is chosen and implemented, shall be chosen based on the analysis of the standard,
the vision for the project and the analysis of the scenarios and wishes of Brodersen
Controls A/S. The overall problem statement can thus be formulated as follows:

Problem Statement

e An analysis shall be performed which provides a general overview of the IEC61850
standard in terms of functionality and scope. The possibility of employing a
Brodersen RTU32 in this communication structure shall be kept in mind.

e The scenarios provided by Brodersen Controls A/S shall be analysed based on
the IEC61850 standard.

e A suitable part of the IEC61850 standard shall be designed and implemented to
run on the Brodersen RTU32 under Windows CE.

1.5 Development Method

In order for a relatively large software project like this to be completed successfully,
it is useful to follow a development process. For this project, a modified waterfall
model has been chosen. According to the experience of the authors, the waterfall
model is used for most smaller study-related projects, but the shortcomings of the
model become more and more apparent the larger the projects are. To counteract
these shortcomings, students often modify the model - often not explicitly - to contain
overlapping phases. "The waterfall model with overlapping phases" is also called the
Sashimi model and this is the approach that has been chosen for this project.

This model neutralises some of the major drawbacks of the unmodified waterfall
model in which one phase must be completed before the next can be commenced.
When developing a project according to the unmodified waterfall model, it is hence
impossible to gain knowledge from for instance the testing phase and use this knowl-
edge to modify the design or requirements phase. With the Sashimi model such in-
sight can be used to modify previous stages and this is an advantage in terms of hav-
ing the solution constructed on schedule and developed according to a well-defined
specification of requirements.

The time plan for the development process is shown in figure 1.2. As the figure shows,
the domain analysis has taken a significant amount of time. This stems from the fact
that the IEC61850 standard is new to the authors and is a large domain to become
sufficiently acquainted with to be able to implement.

Domain Analysis

Requirements

Analysis & Design

Implementation

Test

Deployment

Figure 1.2: Time Plan for Development Process

1.6 About the report

In chapter 2 an analysis of the IEC61850 standard is given. Chapter 3 describes the
design phase of the project. The implementation is described in chapter 4. The tests
of the implementation are described in chapter 5. Finally, chapter 6 concludes the
report.

It has been aimed to make the report as easily readable as possible. However, it is
assumed that the reader has some basic prerequisites with regard to software devel-
opment. Given that the software shall be developed for employment in the domain
of electrical engineering, some basic knowledge of this field is an advantage, but a
software engineering student should be able to get a reasonable grasp of the subject
by reading the report.

In appendix A an explanation is given of the terms which a software engineering
student cannot be expected to be familiar with. Some terms are also explained in
footnotes the first time they are encountered. Appendix B contains details of the
IEC61850 standard which the report makes references to.

Enclosed with the report, a CD should be found which contains all the source code for
the IEC61850 server.

CHAPTER 2

ANALYSIS

The goal of this chapter is hence to give an overview of the contents of the IEC61850
standard and then to delimit the scope of the project based on the analysis of the
scenarios and the RTU.

Section 2.1 will present the analysis of the IEC61850 standardwhere first, a gen-
eral introduction is given to the contents of the different parts of the standard. This
should provide the reader with an overview and basic understanding of the standard.
A more thorough analysis then follows which explains parts of the standard in more
detail, which should give insight into the ideas and methods of the standard. In sec-
tion 2.2 the scenarios provided by Brodersen Controls A/S are analysed with the goal
of detailing which parts of the standard are required in order to implement func-
tionality corresponding to the scenarios. Section 2.3 presents a short analysis of the
Brodersen RTU32. The specification of requirements is given in section 2.4, based on
the analysis. To conclude the chapter, a summary of the analysis is presented in 2.5.

2.1 Analysis of the IEC61850 standard

The purpose of this section is to provide insight and overview of how the standard is
structured and how it works. First, basic concepts of the standard are explained and
then a brief overview is given of the contents of the standard. Afterwards, the dif-
ferent parts of the standard are inspected individually and analysed in more detail.
Later in the chapter this will be the basis for a delimitation of what the software of
this project shall comprise.

2.1.1 Basic Concepts of IEC61850

Some basic concepts will be briefly introduced before the details in the standard are
explained.

10

A substation can be defined as a node in an electrical power network where lines and
cables are connected for transmission and distribution of electric power [2]. A sub-
station often has the capability of transforming electricity, usually from high to low
voltage for distribution by a low-voltage network. Most substations therefore have
one or more transformers and they may have many other functions as well, such
as switching, breaking and protection capabilities. A substation automation system
(SAS) is a computer system which allows e.g. an administrator to communicate with
the substation over a computer network such as the internet. Obviously, when devel-
oping such a system it is necessary to create a model of a general substation with all
of its components and functions. Then it is necessary to stipulate the exact form of
communication that is allowed and supported by the system. This describes exactly
the challenges addressed by the IEC61850 standard.

Hides/encapsulates real World

Real devices
in any

X
substation
IEC 61850-7-4
data (Position)

1T 1

& Network
IEC 61850-6
configuration file

S

i S S) wilhs
Figure 2.1: Conceptual modeling approach of the IEC61850 standard. A
real physical substation is modelled into a virtual substation. The vir-
tual substation contains a detailed data model encapsulating the real

Services b
SCSM
IEC 61850-8-1
world objects and services are mapped to a network communication pro-

XCBR1
Position|
Modge
IEC 61850-7-4 logical
node (circuit breaker)
tocol. Relevant parts of IEC61850 are shown. Figure occurs in [9].

IEC 924/03

Figure 2.1 illustrates how the substation is virtualised into a data model suitable for
a computer system. This data model consists of a number of logical nodes, which are
the key objects in the model of the IEC61850 standard. A logical node can have a
number of data objects attached to it, and each data object can have a number of data

11

attributes. The data model is explained more thoroughly in section 2.1.3.

A substation can often comprise a number of IEDs. When an IED is added, the ex-
tension must be reflected in the particular instance of the data model modelling the
substation. This instance should be extended correspondingly. As is also illustrated
in figure 2.1, the IEC61850 standard allows for configuration and modifications to a
SAS, through the use of SCL which is defined in IEC61850-6 ([7]). This language is
explained in section 2.1.4.

An TEC61850 server provides a number of services for a client. For instance, logging,
reporting and settings control is possible. All the services are defined in part 7-2 of
the standard named Abstract Communication Service Interface (ACSI). Many of the
services of the ACSI are explained in section 2.1.5 of this analysis.

A client that is able to connect to a substation is sometimes referred to as a SCADA
system or a control center.

The data model and ACSI define the structure and form of the content communicated
by the IEC61850 server to clients. The ACSI can be mapped to a specific commu-
nication service mapping (SCSM). While other SCSMs could be used as far as the
ACSI is concerned, specific communication mappings are defined in IEC61850-8 and
IEC61850-9. These are explained in section 2.1.8.

2.1.2 The IEC61850 Standard - Overview and Scope

The general title of the IEC61850 standard is Communication networks and systems
in substations. The standard consists of the following parts:

e TEC61850-1 Introduction and overview

e TEC61850-2 Glossary
Explains terms and abbrevations used throughout the standard

e TEC61850-3 General requirements
Specifies system requirements with emphasis on the quality requirements of
the communication network.

e TEC61850-4 System and project management
Specifies system and project management with respect to the engineering pro-
cess, life cycle of overall system and IEDs!, and the quality assurance.

Intelligent Electronic Devices

e TEC61850-5 Communication requirements for function and device models
Describes all required functions in order to identify communication require-
ments between technical services and the substation, and between IEDs within
the substation. The goal is interoperability for all interactions.

e TEC61850-6 Substation automation system configuration description language
Specifies the SCL file format for describing communication related IED configu-
rations, IED parameters, communication system configurations, function struc-
tures, and the relations between them. The purpose is to exchange IED capa-
bility description, and SA? system descriptions between IED engineering tools
and different system engineering tools.

e TEC61850-7 Basic communication structure for substation and feeder equip-
ment

- IEC61850-7-1 Principles and models
Introduces modelling methods, communication principles and information
models used in IEC61850-7. Also, detailed requirements and explanations
are given regarding the relation between IEC61850-7-x and the require-
ments from IEC51850-5.

- IEC61850-7-2 Abstract communication service interface (ACSI)
Presents the ACSI providing abstract interfaces describing the communi-
cations between a client and a remote server, such as interfaces for data
access and retrieval, device control, event reporting and logging.

- IEC61850-7-3 Common data classes
Specifies common attribute types and common data classes related to sub-
station applications. The common data classes specified, are for instance,
classes for status information, measured information, controllable status
information, controllable analogue set point information, status settings
and analogue settings.

- IEC61850-7-4 Compatible logical node classes and data classes
Specifies the compatible logical node names and data names for communi-
cation between IEDs.

e TEC61850-8 Specific communication service mapping (SCSM)

- TEC61850-8-1 Mapping to MMS? (ISO/IEC 9506 Part 1 and Part 2)
Specifies how time-critical and non-time-critical data may be exchanged
through local area networks by mapping ACSI to MMS.

e TEC61850-9 Specific communication service mapping (SCSM)

- IEC61850-9-1 Serial undirectional multidrop point to point link
Specifies the specific communication service mappings for the communica-

2Substation Automation
3Manufacturing Message Specification - An international networking standard

13

tion between bay and process level and a mapping of the abstract service
for the transmission of sampled values. These are specified on a serial uni-
directional multidrop point to point link.

- IEC61850-9-2 Mapping on a IEEE 802.3 based process
Defines the SCSM for the transmission of sampled values according to the
abstract specification in IEC61850-7-2.

e TEC61850-10 Conformance testing
Specifies how a SAS* should be tested to ensure conformance with the IEC61850
standard.

In order to get an outline of where exactly the IEC61850 communication standard
and an RTU appear in relation to substation automation systems, two typical setups
shall be presented. These two scenarios are illustrated in figures 2.2 and 2.3. Other
setups are also conceivable but these two figures underline the difference between a
traditional setup with an RTU and the intended LAN setup of the future. These two
setups shall be referred to as the RTU setup and the LAN setup.

SCADA

IEC61850

RTU

hardwired
inputs/output

Relay

Figure 2.2: ITEC61850 communication profile placed in an RTU setup.
The RTU is hardwired to other substation equipment and IEC61850 is
the means of communication between RTU and SCADA system. Inspired
by figures in [16] and [8]

In the RTU setup (figure 2.2, devices are typically hardwired to the input and output
ports of the RTU. In this case, the IEC61850 standard can allow a traditional substa-
tion setup to comply with the new standard on the communication side towards the

4Substation Automation System

14

SCADA
IEC61850
IED IED
IEC61850 IEC61850
Gateway LAN
IEC61850 IEC61850
1ED IED

Figure 2.3: TEC61850 communication profile placed in a LAN setup.
IEC61850 is the means of communication between IEDs and gateway
(over LAN) and also between SCADA and gateway (over TCP/IP or LAN).
Inspired by figures in [16] and [8]

control center. This might be advantageous if an IEC61850 compliant SCADA system
is to be connected to a traditional RTU setup.

In the LAN setup, the IEC61850 is used both in the communication between IEDs in
the SAS and between the SAS and the SCADA system in which case it is usually be-
tween the gateway and SCADA. However, the IEDs may also be able to communicate
with the SCADA. Since the standard has been developed also for this kind of commu-
nication, it is clear that this is the type of setup envisioned as the typical setup for
the future. However, it is likely that the RTU setup will be around in the substation
automation area for many years to come, since it is a domain where it usually takes
a long time for existing technology to be completely replaced by new technology.

Figure 2.1 explains the conceptual modelling approach of the IEC61850 standard. It
also shows which parts of the standard deal with certain aspects of the substation
automation system and the communication involved.

Parts 6 to 9-2 constitute the main parts of the standard. Therefore these parts will
be the focus of the analysis in this chapter. These parts define the way a substation is
modelled with data classes and services. The SCL language is defined, which allows
a user to configure a substation automation system or a single IED connected to the
system. Also, the abstract communication service interface (ACSI) is defined which
lists all the services available for a client. Finally, it is explained how these abstract
services could be mapped to a specific communication service mapping (SCSM).

15

2.1.3 Data Model

As was illustrated in figure 2.1, logical nodes are key objects in the IEC61850 data
model. The data model is hierarchical and logical nodes are the essential elements
of this model. A logical node represents a particular function within a device and
can be defined as “the smallest part of a function that exchanges data“ [6](3.5). The
IEC61850 standard defines 91 different logical node classes which are grouped to-
gether into 13 logical node groups according to their functionality (for a complete list,
refer to Appendix B.1). These are defined in [9] and each LN is defined as a class with
certain attributes.

In an instance of the data model, some of the logical node instances may be grouped
together into a bay which is defined as closely connected subparts of the substation
with some common functionality [6](3.10). A bay is thus a logical grouping, not nec-
essarily a physical device. In the hierarchical data model, it can be represented by a
logical device.

The hierarchy of the data model is illustrated in figure 2.4. In a substation there can
be one or more physical devices. A physical device has one or more servers and a
server is the topmost object in the hierarchical data model. A logical device is a more
fine-grained grouping of functionality related to a particular physical device. The log-
ical device is contained in a server. Thus, one server may have more than one logical
device and a logical device may contain several logical nodes.

Server

Logical Device |

Logical Node

Data

Data Attribute

Figure 2.4: The hierarchy of the data model of IEC61850. One server
may contain more than one logical device (LD) and so on. 91 different
LNs are defined which inherit from one abstract LN class. Each LN
contains certain mandatory and optional DATA.

Further down in the hierarchical model, a logical node has a number of data objects

16

attached to it, and each of the data objects have a number of attributes with values.

Part of what makes logical nodes the pivotal point of the data model is the fact that
they are predefined. Whereas the logical device and server may be decided upon in-
dividually by manufacturers or administrators of a substation, there are predefined
logical nodes which cover all the necessary functionality of substation components.
This is a benefit considering the goal of the standard which is to achieve interoper-
ability between devices from different vendors.

Hubert Kirrmann of ABB Research Center states that: “Although IEC 61850 is de-
fined as a ’communication structure for substation and feeder equipment’ its main
contribution is the definition of an object model for all substation objects“ [15]. It is
clear that since the standard has interoperability as a goal, its data model is of essen-
tial importance, and therefore it is an advantage that all functions can be modelled
precisely and by predefined objects.

An important aspect of the object model is the fact that users are allowed to name
substation components in a meaningful way. This is a consequence of the object ori-
ented approach used for developing the standard.

The standard defines an object reference to differentiate between a reference to an
object and the object name. The object reference is important in terms of implemen-
tation and is based on the data model in a straightforward manner. The object ref-
erence is comprised of the objects ordered hierarchically according to the data model
and with dots between them. The general format is:

ID/LN.Data.DataAttribute

but this will be slightly extended later.

2.1.4 Substation Configuration Description Language

A substation may be altered in structure for instance if one or more IEDs are added.
Such additions can be defined by use of an SCL file. The SCL language allows for
configuration of a substation both before employment but also as further equipment
is added to the substation. SCL is short for Substation automation system Configu-
ration description Language and it is defined in [7].

The SCL file format is used for describing communication related IED configurations,
IED parameters, communication system configurations, function structures, and the
relations between them. The purpose is to exchange IED capability description, and

17

Extension

Name

Description

ded

IED Capability Description

Defines complete capability of

an IED. Contains single IED
description, optional communication
system description and optional
substation description

.ssd System Specification Description Complete specification of
SAS excluding IED descriptions
.scd Substation Configuration Description | Complete specification of
SAS including IED descriptions
.cid Configured IED Description Makes communication possible between

an IED and a IED configuration tool.

Table 2.1.1: The file types of SCL as defined in [7]. All file types are in XML format,
but they contain different elements depending on their purpose.

substation automation system descriptions between IED engineering tools and dif-
ferent system engineering tools.

The SCL language is made up of four file types, each with a specific purpose. The
types are shown in table 2.1.1. Any SCL file is structured with XML format and is
made up of some of the following five parts, depending upon its purpose:

1. Header

2. Substation description

3. IED description

4. Communication system description
5. Data type templates

Table 2.1.1 shows in which file types the different parts occur. In order to be fully
compliant with the IEC61850 standard, an IED shall have an ICD file containing ba-
sic information about the IED such as which logical nodes and services it supports,
the IP address and so on. A configuration tool can then read such files and gener-
ate or modify an SCD file which describes the full substation configuration. This file
should be based not only on the ICD files, but also on information entered by a system
integrator about the substation prior to adding the IEDs, or alternatively an SSD file
describing the SAS itself [7][1].

An SCD file used in this project is shown in Appendix C.

18

2.1.5 Abstract Communication Service Interface

Part 7-2 of IEC61850 [9] is dedicated entirely to the Abstract Communication Service
Interface, abbreviated ACSI. The ACSI provides a number of abstract interfaces and
it can be said that the ACSI represents the full capability of an IEC61850 Server as
seen from a client. Some of the interfaces describe communications between a client
and a remote server while other interfaces are provided for communication between
an application in one device and remote applications in other devices. This could
be system-wide event distribution or transmission of sampled measured values. The
communications between a client and a remote server could be device control, report-
ing of events, logging of events, publisher/subscriber and others.

Information models
(IEC 61850-7-4)
(IEC 61850-7-3)

ACSI basic information models
(IEC 61850-7-2)

Information models
A

Specializations Compatible
LOGICAL-NODE 4 LOGICAL-NODE
DATA <] Specializations C?Ap-?xle o
. T |
ol | l = bl v
° 7 DATA } = |3 Vj |]
o services | o
g Service models 4 s | //
£ : P oy
£] N services ——— other than in LN and DATA+—__| ¥ R
c (for example DATA-SET, .
8 Reporting, GOOSE) Real device
w
E
i)
£

ACSI information exchange (IEC 61850-7-2)

Figure 2.5: Conceptual model of ACSI which is comprised of both the
information model (basic service models) and the information exchange
model (other service models) [9]

The model of the ACSI, described in [9], defines an information model and an infor-
mation exchange model. The information model corresponds with the models defined
in [10] and [11] (“Common data classes” and “Compatible logical node classes and
data classes“) and the relationship between the information model and the informa-
tion exchange model is illustrated in figure 2.5, showing an excerpt of the conceptual
model of the ACSI.

As can be seen from figure 2.5 the model consists of, firstly, ACSI basic information
models which can be conceived as specialisations of the information models defined
in IEC61850-7-3 and 7-4 ([10] and [11]) along with basic service models. Secondly, it
consists of an information exchange model involving service models other than Logi-

19

cal Node and Data classes. An outline of these two models is presented below.

Information Model

SERVER - represents the external visible behaviour of a device. All other ACSI
models are part of the server

Application association - allows a client to be accociated (connected) with a
server

LOGICAL-DEVICE (LD) - contains the information produced and consumed by
a group of domain-specific application functions. Functions are defined as Logi-
cal Nodes.

LOGICAL-NODE (LN) - contains the information produced and consumed by
a domain-specific application function, for example, overvoltage protection or
circuit-breaker.

DATA - provide means to specify typed information, for example, position of a
switch with quality information and timestamp, contained in LNs.

Information Exchange Model

DATA-SET - permits the grouping of data and data attributes.
Substitution - supports replacement of a process value by another value

SETTING-GROUP-CONTROL-BLOCK - defines how to switch from one set of
setting values to another one and how to edit setting groups

REPORT-CONTROL-BLOCK and LOG-CONTROL-BLOCK - describe the con-
ditions for generating reports and logs based on parameters set by the client

Control blocks for generic substation events (GSE) - supports a fast and reliable
system-wide distribution of input and output data values.

Control blocks for transmission of sampled values - fast and cyclic transfer of
samples, for example, of instrument transformers

Control - describes the services to control, for example, devices

Time and time synchronization - provides the time base for the device and sys-
tem

File transfer - defines the exchange of large data blocks such as programs

Each of the items listed above correspond to one ACSI class and these are defined
with class syntax, class attributes and types throughout [9]. The complete list of ACSI

20

classes and their services is shown in table B.2.1. Details as to how responses and
error messages shall be given, are also given in this part of the standard. To give an
overview and understanding of these classes and services, most of them are explained
briefly in the analysis which follows. The order shown above shall be used and the
models shall be divided into information models and information exchange models.
The analysis will leave out the majority of the details provided in the standard, but
might still be perceived as rather detailed and difficult to read.

2.1.6 Information Models

SERVER

The SERVER class (defined in clause 6 of [9]) represents the externally visible be-
haviour of a device. The class contains an attribute ServiceAccessPoint which
identifies the server within a system. It is an abstraction of an address to identify
the server in the underlying SCSM. The class also contains a list of Logical Devices
where at least one Logical Device must be contained. Furthermore it contains the
attributes File, TPAppAssociation and MCAppAssociation. These are (possi-
bly empty) lists containing files on the server, two-party application associations and
multicast application associations (explained in next section). The SERVER class
provides the service GetServerDirectory which a client can use to retrieve the
definition of the accessible information of a server. The service returns the LDs con-
tained in the server.

Application Associations

Application associations are defined in clause 7 of [9] and the association model de-
fines two association classes, TPAA and MCAA, for two-party and multicast applica-
tion associations, as well as access control concepts. The role of these associations is
to make sure that reports and logs are transmitted to the correct clients. The class
TPAA provides a bi-directional connection-oriented information exchange where ser-
vices are confirmed. The attributes are AssociationId specifying an identification
for the association and AuthenticationParameter containing user identification,
view (access rights) and password. There are three services defined, Associate,
Abort and Release. The class MCAA provides a unidirectional information ex-
change where services are unconfirmed. The server acts as a publisher and trans-
mits information to one or more subscribers (clients). MCAA is used by a number of
services which transmit data to all clients according to subscriptions.

21

LOGICAL-DEVICE

The LOGICAL-DEVICE (abbreviated LD) is a composition of LOGICAL-NODE (ab-
breviated LN). It is defined in clause 8 of [9] and can be used simply as a container
of a group of logical nodes. The attributes of the class are the name of the instance,
path name of the instance and a list of contained logical nodes. There is one service
provided, namely GetLogicalDeviceDirectory, which provides a client with a list
of all contained logical nodes.

LOGICAL-NODE

The LOGICAL-NODE class (abbreviated LN) is a composition of a number of other
classes, including DATA, DATA-SET, BRCB, URCB, LCB and LOG. All of these classes
will be explained in the following. Also the LN class has attributes for instance name
and instance path name. If the logical node is LLNO (Logical node zero, a special LN
class defined in [11]), a few additional classes are also contained in it. The services
provided by the LN class are GetLogicalNodeDirectory and GetAllDataValues.
The LN class is defined in clause 9 of [9].

In [11] the concept of logical nodes is further elaborated. 91 compatible logical node
classes are defined which are specialisations of the LN class explained above. These
classes can be grouped together as shown in table B.1.1 of the Appendix. The 91 com-
patible logical node classes each describe and represent some particular functionality
in a substation. Some examples of logical nodes:

e The measurement logical node which is called MMXU. The first letter indicates
that it belongs to the group M (Metering and Measurement). MMXU is used
for calculation of currents, voltages, powers and impedances in a three-phase
system. It is defined in [11](5.10.7).

e The circuit breaker logical node, XCBR, in group X (Switchgear). It is used for
modelling switches with short circuit breaking capability. Defined in [11](5.12.1)

e The alarm handling logical node, CALH, in group C (Control). It allows the
creation of group warnings and alarms. Defined in [11](5.6.2).

The compatible logical node classes are defined as subclasses of the LOGICAL-NODE
class defined in [9]. Each of them are defined with relevant attributes from the many
DATA classes (see below). Obviously, it will be too tedious to list all of the logical
nodes and class definitions here. For a complete definition of all compatible logical
node classes, refer to [11].

22

Object Reference Type Remark

MMXU1 LN Measurement LN

MMXU1 .PhV DATA Phase to ground voltages
MMXU1 .PhV.phsA DATA Value of Phase A
MMXU1l.PhV.phsA.cVal DataAttribute | Complex Value
MMXU1l.PhV.phsA.cVal.mag DataAttribute | Magnitude of complex number
MMXU1l.PhV.phsA.cVal.mag.f | DataAttribute | Floating point number

Table 2.1.2: Example of types: The logical node MMXU. The recursive structure of
types DATA and data attributes is illustrated.

DATA

The DATA class, like the LN class, is a key element of the IEC61850 standard. It
is defined in clause 10 of [9]. Values of DATA instances represent meaningful infor-
mation about substation devices, such as currents, voltages, power, phases, tempera-
tures, status, timestamps and so on. The DATA class is defined in a somewhat more
complicated manner than the classes previously explained in this analysis. This is
due to the fact that a DATA instance may contain attributes which are themselves
instances of the DATA class. Hence, it can be said that the DATA class is recursively
defined. Furthermore, one of the attributes of the DATA class may contain the class
DAType which is also recursively defined. In order to get a profound understanding
of the DATA class and its attributes and their types, a thorough study of clause 10 of
[9] is recommended.

Like the LD and LN classes, the DATA class has attributes for name and path name of
a DATA instance. These are called DataName and DataRef. It also has an attribute
called Presence indicating whether or not the instance is mandatory or optional.

The DATA class may also contain a list with a number of attributes (zero or more)
called DataAttribute. These constitute yet another class which contains attributes
for name, path name and presence (optional/mandatory) along with zero or more in-
stances of CompositeComponent and zero or one instance of PrimitiveComponent (but
at least one must be present). The DataAttribute class is a subclass of DAType and
the CompositeComponent class is also a subclass of the DAType class which means
that yet another recursive structure is found here.

As an example to illustrate the structure of the DATA class, the measurement logical
node class MMXU may be considered. It represents measuring functionality in a
substation. A logical node instance can be named MMXU1. In table 2.1.2, some possible
instances of DATA and DAType are listed.

Data attributes of type DataAttribute can be classified according to their specific

23

use. The IEC61850 standard defines a number of functional constraints which are
attributes of each data attribute. A functional constraint indicates that the data at-
tribute is used for some particular purpose, such as reporting, logging, configuration,
setting groups and so on. The functional constraints of a DATA instance decide the
rights of services to read and/or write the DATA. The complete definition of functional
constraints is found in [9].

2.1.7 Information Exchange
DATA-SET

A DATA-SET is an ordered group of ObjectReferences of DATA or DataAttributes. It
is defined in clause 11 of [9]. The data and data attributes are organized into a DATA-
SET for the convenience of the client. The DATA-SET class contains attributes for
name, path name and a list of dataset members which contains functionally con-
strained data or data attributes of the data and data attributes which are organized
in the DATA-SET. Both the client and the server shall keep track of the order and
membership of a DATA-SET, so that only the name of the DATA-SET and the current
values need to be transmitted.

There are five services provided by the DATA-SET class. The membership and order
can be retrieved with service GetDataSetDirectory. DATA-SETs may be created
and deleted by CreateDataSet and DeleteDataSet. Finally, values may be read
and written by GetDataSetValues and SetDataSetValues.

Substitution

The substitution model (defined in clause 12 of [9]) allows for a value of a data at-
tribute to be substituted with a manually entered value if the attribute has a particu-
lar functional constraint, namely MX for analogue values or ST for status values. The
process relies on the substitution-related data attributes defined in [10], like subEna
and subVal. This allows a client operator to enter a substitution value for particular
data attributes, so that if these are retrieved, for instance by a report, the substition
value will be transmitted instead of the value determined by the process.

SETTING-GROUP-CONTROL-BLOCK

The SETTING-GROUP-CONTROL-BLOCK class model is defined in clause 13 of [9]
and is abbreviated SGCB. It allows for a DATA instance to have several values, which
are used one at a time. It can also be applied in this manner on a set of DATA
instances. The SGCB can provide one or many setting groups (SGs) which contain

24

values for each of the relevant DATA instances. At any given time, only one of the
SGs is active and therefore the DATA instances have values corresponding to that SG.
The DATA must be properly functionally constrained in order to be used by services
of this class.

Reporting

Reporting is handled by the REPORT-CONTROL-BLOCK class of the ACSI, defined
in clause 14 of [9]. This class shall control the procedures that are required for report-
ing values of DATA from one or more LNs to one client. Three trigger options are de-
fined, namely data-change, quality-change and data-update, which can cause a report
to be sent to a client. Two classes of report control are defined, BUFFERED-REPOR'T-
CONTROL-BLOCK (abbreviated BRCB) and UNBUFFERED-REPORT-CONTROL-
BLOCK (abbreviated URCB).

The class BRCB allows for the sending of reports to be issued immediately, or for the
events to be buffered for transmission after an amount of time specified in the bufTm
property. Furthermore, BRCB provides the sequence-of-events (SoE) functionality
and if the connection is broken when reporting is to take place, the report is buffered
and sent when the connection is re-established.

The class URCB on the other hand, only allows transmission of reports according to
the time specified in the bufTm property. No further buffering is performed if the
connection is lost and the reports are discarded in that case. URCB does not provide
SoE functionality.

For both types of reporting, the server must restrict access to an instance of a report
control block to one client at a time. The client will be associated with the control
block and that client will be the only one receiving reports from the control until
the association is released or aborted. In order for more than one client to receive
reports of the same values of DATA, multiple instances of the report control block
classes must be made available. It is also defined in the standard how this should
be achieved. In this context, it must be discerned between buffered reporting and
unbuffered reporting.

In the case of buffered reporting, it is important that a client whose connection is lost
in the middle of the transmission of the report, is associated with the same report
control instance the next time the client connects. This way the report control can
keep track of which report was successfully transmitted last, and thus, which reports
are yet to be transmitted. For unbuffered reporting, this is not necessary. The class
provides services for sending a buffered report and reading or writing attributes of a

25

BRCB.

The report control class for unbuffered reporting, URCB, is somewhat similar to the
BRCB class.

Logging

Class models for logging are defined in clause 14 of [9]. The purpose of logging is
to maintain an internal storage of historical data values for subsequent reviewing
or producing statistics. It is independent of communication and should thus take
place even if communication breaks down. Logging can be generally divided into pe-
riodic recordings and event-triggered SOE data. There are two classes that handle
logging in the IEC61850 standard; the LOG-CONTROL-BLOCK class (abbreviated
LCB) which controls the logging and the LOG class. One LOG may be controlled by
multiple LCBs.

The LCB class controls the procedures that are required for storing values of DataAt-
tribute into a LOG. Each enabled LCB shall associate a DATA-SET with a LOG.
Changes in a value of a member in the particular DATA-SET will be stored as a
LOG entry. LCB contains attributes for name, path-name, whether the instance is
enabled, DATA-SET being monitored, optional fields, trigger options and integrity
period. Furthermore there is a LogRef attribute indicating the reference to the LOG
to which log entries shall be recorded. Two services are offered, GetLCBValues and
SetLCBValues. As the names indicate, the first one retrieves attribute values from
the LCB while the second one sets the attribute values.

The LOG class contains the actual entries and shall be filled on first-in first-out
(FIFO) basis. That is, when the stored data reaches the maximal size of the log,
the oldest entries shall be overwritten. The LOG class has attributes for name and
path-name of LOG instances. It also has attributes with timestamp for the oldest log
entry time and newest log entry time.

The entries are stored in the Entry parameter, with attributes for entry time, entry
identifier, and parameter EntryData with dataset, value and trigger options. The
services defined for the LOG class are:

e QueryLogByTime: read log entries between selected start time and stop time
e QueryLogAfter: read log entries selected by entry ID

e GetLogStatusValue: get the status value of a log

26

Generic Substation Event - GSE

The purpose of the GSE class model is to provide the possibility for fast and reliable
system-wide distribution of input and output data values. It is intended to provide
an efficient method for delivering the same generic substation event information to
physical devices through multicast/broadcast services. The GSE class model is de-
fined in clause 15 of [9]. The details of how reliability and a short transmission delay
are achieved depend upon the SCSM (see below) and the communication stack used.

Transmission of sampled values

Clause 16 of [9] defines a model for transmission of sampled values. This model
applies to the exchange of values of a DATA-SET of the common data class SAV (de-
fined in [10]. The exchange is based on a subscriber/publisher mechanism and takes
into account time constraints and sampling rates. Two methods are provided, namely
MULTICAST-APPLICATION-ASSOCIATION (using multicast sampled value contol,
MSVCB) and TWO-PARTY-APPLICATION-ASSOCIATION (using unicast sampled
value control, USVCB).

CONTROL

The control model, defined in clause 17 of [9], provides services for a client to control
DATA related to external devices and control outputs. This is done by operating on
DATA with certain functional constraints (CO or SP) and of certain common DATA
classes (SPC, DPC, INC, BSC, ISC or APC). DATA of one of these classes are called

control objects in this context.

The following services are defined in the control class model:

e Select (Sel) / SelectWithValue (SelVal)
The Select service only selects an object to be controlled. The reference to the
object is the only parameter and it is also included in the response. The Se-
lectWithValue service includes a value for the object to be controlled, the time
stamp for when the control request is sent, whether the control is part of normal
operation or a test, and finally which checks shall be performed by the control
object before operations are issued.

e Cancel
The Cancel service is used for deselecting an object. The parameters included
are a reference to the object, a time stamp and whether it is a test.

e Operate (Oper) / TimeActivatedOperate (TimeOper)
These services require exactly the same parameters as SelectWithValue. In the

27

TimeActivatedOperate, the time stamp is the time when the operation shall be
issued. The service checks for validity of this time stamp.

e CommandTermination (CmdTerm)
Terminates the command. Parameters are reference to control object, time
stamp and whether it is a test.

The behaviours of the services are defined in state machines and there are four be-
haviour models defined. These are listed below along with remarks to their use.

e Direct control with normal security (direct-operate)
used for operations on local DATA or on DATA that influence external devices
where return information is not supervised. Uses services Operate and Time-
ActivatedOperate.

e SBO control with normal security (operate-once or operate-many)
SBO means "Select Before Operate" and uses services Select, Cancel, Operate
and TimeActivatedOperate. In this case, the control object checks if the client
has the appropriate access authority and that the object is not currently selected
before operation is carried out.

e Direct control with enhanced security (direct-operate)
Uses Operate, TimeActivatedOperate and CommandTermination. In the case of
enhanced security, each command sequence shall be terminated with the Com-
mandTermination service, and additional supervision of the status value is en-
sured by the control object.

e SBO control with enhanced security (operate-once or operate-many)
Uses services SelectWithValue, Cancel, Operate, TimeActivatedOperate and
CommandTermination. In this case, the Operate request must be issued be-
fore a deselect timer expires, and the state of the control object must be Ready
for that particular client for the operation to be carried out.

Time and time synchronization

Clause 18 of [9] defines the time and time synchronization model which shall provide
the UTC5 synchronized time to applications in the server and client substation IEDs.
The model comprises external information from an external source, a time server, a
time synchronization protocol, time stamp semantics, presentation of time stamps,
and the server and client involved. Some of these are defined in IEC61850 while
others may depend upon the SCSM.

5Coordinated Universal Time

28

Naming conventions
Clause 19 of [9] defines conventions for class and instance naming. The general for-
mat of an instance name follows the pattern:

ILD/LN.Data[.Datal. ...]1DataAttribute[.DAComponent [. el

where the inner bracket indicates further recursive definitions of nested data at-
tribute components. As an example,

E1QA5/XCBR.Pos.ctlVval
may refer to either a class definition or an instance of the class. On the other hand,
E1QA5/XCBR8.Pos.ctlVal

can only refer to an instance since the logical node name contains an 8 which the
class name cannot do. The names also have to comply with certain length definitions.

File transfer

The ACSI shall provide a file store according to the file model of clause 20 of [9]. It
contains a class definition for FILE with services for

e retrieving the contents of a file from the server to a client

sending the contents of a file from a client to the server

deleting a file in the file store of the server

retrieving the file name and attributes from the file store

2.1.8 Communication

The parts up to and including 7-4 of the IEC61850 standard describe how a substation
and related components are modelled in a piece of software with the capability of con-
trolling and monitoring the substation. In part 8 and 9, focus is shifted to the larger
picture, involving clients possibly residing on other computers than the server, but
connected in a network to the server. In order to make this feasible, a communication
structure must be decided upon, so that the client and the server can 'understand’
each other.

This means that the abstract services defined in the ACSI of [9] must be made avail-
able in some protocol that the server and clients are able to apply. The term abstract
indicates that only aspects required on the receiving side of a request are included.
Thus, the ACSI defines only the semantics, not the syntax, of the services.

29

In order to make these services available for a client, the syntax is also required. This
could be achieved in a number of ways. For instance, a communication protocol could
be invented as part of the IEC61850 standard. However, to achieve interoperability
and make it easier to employ the new standard, it would be favorable to choose an
existing and widespread communication structure and provide a mapping to one or
more of these protocols. This is probably the reason why the IEC have chosen to pro-
vide mappings to already standardised protocols such as MMS and Ethernet. Such
mappings are called Specific Communication Service Mappings and are abbreviated
SCSM.

IEC 61850-7-4 » Information models

IEC 61850-7-3
IEC 61850-7-2 R Information exchange, ACSI
EXEEl || I)
Application MMS (ISO 9506)
Presentation ASN.1/Presentation
Session Session >/
Transport ETFRFCI006 TP
Network IP
Data Link Ethernet, ...
Physical Physical)

Figure 2.6: The SCSMs of IEC61850 placed according to the OSI layers
[8]

Figure 2.6 illustrates the three SCSMs proposed in the IEC61850 standard and places
them according to the OSI model. In the figure, the SCSMs are named according
to their part numbers in the standard, IEC61850-8-1 ([12]) and IEC61850-9-x for
IEC61850-9-1 and IEC61850-9-2 ([13] and [14]).

The SCSM of IEC61850-8-1 maps most ACSI services to the Manufacturing Mes-
sage Standard which is an international networking standard (ISO 9506), usually
abbreviated MMS. It also provides mappings for Sampled Values, GOOSE, Time Syn-
chronization and GSSE to Ethernet. This SCSM thus covers most of the services ex-
plained in this chapter. MMS is placed in the application layer of the OSI model while
TCP/IP and Ethernet are placed in the socalled T-profile, comprised of the transport
layer and those beneath it. Ethernet is also an international standard (IEEE 802.3).

30

Ethernet is also the basis for the SCSMs proposed in IEC61850-9-1 and IEC61850-9-
2. IEC61850-9-1 is named "Sampled values over serial unidirectional multidrop point
to point link". As can be seen from the figure, this SCSM is placed only in the T-profile
while the A-profile layers are not specified. In this SCSM, a mapping is provided for
the communication between merging units and devices on bay level which need raw
data [13].

IEC61850-9-2 is named "Sampled values over ISO/IEC 8802-3" and is intended as a
supplement to IEC61850-9-1 to provide a complete mapping for sampled measured
values [14].

2.2 Analysis of Scenarios

This section gives an analysis of the scenarios provided by Brodersen Controls A/S.
Each subsection begins with explaining the scenario itself. Afterwards there is an
analysis of the IEC61850 standard with respect to the current scenario. The analysis
shall identify components of the ACSI which must be implemented in order to pro-
vide functionality for the relevant scenario. The analysis shall place the scenarios in
relation to the scope of the scope of the IEC61850 standard.

Annex G of IEC61850-5 [6] is used for some cases, since it contains a number of sce-
narios for which logical nodes are listed.

2.2.1 Scenario 1: Event based single alarm

A monitor relay on the secondary side of a transformer detects a low voltage level. The
level detection sets a physical input on the RTU. The RTU application program de-
tects that the input is activated and adds immediately a time stamp with millisecond
accuracy to the input event. The alarm is now reported to the SCADA system with
highest priority. Any other derived alarms from the actual phase break event (maybe
100 alarms) should be suppressed until the highest priority alarm has been sent. The
alarm should be sent including identification, time stamp and cause of transmission,
The RTU should keep the alarm data until it is acknowledged by the SCADA system.

In order for this case to be covered by the IEC61850 server, it would be ideal to map
the monitor relay to the logical node PTUV which represents a protection relay which
operates when its input voltage is less than a predetermined value. PTUV is defined
in clause 5.4.24 in [11]. The minimal allowed value of the voltage can be stored in
PTUV.StrVal.minVal. How the monitor relay is mapped to the logical node in the

31

data model on the RTU is outside the scope of the standard and must be handled by
an extra configuration file or module.

It is necessary to distinguish between alarms and reports in this context. In IEC61850
terms, an alarm is just an event with time stamp, and this event can be reported by
the server to the client. In order for such an event to be sent as an alarm in the sense
of the scenario, the bufTm property for the report control block should be set to zero,
so that the report would be transmitted immediately. However, the standard does not
include a way of giving priority to alarms in such a way that a large number of other
reports can be supressed until one particular report is sent. This would also have to
be handled by the extra RTU functionality.

A report can be generated based on trigger events in a dataset. In this case, a dataset
would be created containing some of the data objects or data attributes in the PTUYV,
such as PTUV.Op.General which indicates whether the protection relay operates.
The report is then set up to subscribe to this dataset. When the voltage is detected
to be too low, the protection relay will operate and elements in the subscribed dataset
will change, thereby triggering the event which causes the report to be sent.

The reporting services of classes URCB and BRCB are obviously required in order to
implement this scenario. Each of these control blocks has 3 services, a report service,
a get service (GetBRCBValues or GetURCBValues) and a set service (GetBRCBVal-
ues or SetBRCBValues). The report service sends the report and is the most essential
requirement for this scenario.

The get service allows the client to view what the report subscribes to and the set ser-
vice can edit the subscriptions of the report. Therefore, these services are also highly
relevant for the scenario to allow the client to review or change report settings.

If the client is to be presented with an overview of the structure of the substation
prior to viewing or editing report settings, some more basic services are also required
such as GetServerDirectory, GetLogicalNodeDirectory and so on.

Association services are also a basic requirement in order for a client to connect to the
IEC61850 server. There are three association services, Associate, Abort and Release.

The basic services for retrieving an overview of the substation components (Get-
ServerDirectory etc) and association services can be seen as a requirement in all the
scenarios and will not be mentioned for each case.

32

The IEC61850 standard does not prescribe how the particular inputs shall be mapped
to elements in the data model, such as the data attributes in the logical node PTUV.

Sequence Diagrams

Figures 2.7, 2.8 and 2.9 show sequence diagrams for some of the services necessary
for scenario 1. The role of a system sequence diagram is to visualise the interaction
between components of the system, in these cases the client and the server. In this
chapter, system sequence diagrams show the client and the system and messages that
are sent (invoked services) as well as responses. The diagrams shown here include
parameters that are sent in both directions. When the parameter names are long,
they are shown abbreviated in the diagrams. The ACSI services in IEC61850 always
define one response for normal opreration and also an error response for failure. The
diagrams will show only the normal operation responses. In chapter 3 the sequence
diagrams will be elaborated and used for designing solutions for the cases.

Client System

Figure 2.7: Sequence Diagram for Association. The parameters sent
from the client are ServerAccessPointReference and AuthenticationPa-
rameters. In case of error, an error response is sent

Association can be thought of as the initiation of communication so this will take
place before any of the other services become relevant. Therefore, this service is
depicted in a sequence diagram in figure 2.7. A service such as GetServerDirectory
might be requested in order for the client to become acquainted with the structure of
logical devices on the server. Subsequently, the client could send requests for services
like GetLogicalDeviceDirectory, GetLogicalNodeDirectory and so on, to retrieve a full
overview of the substation structure residing on the server. Sequence diagrams for
these services would resemble the one in figure 2.8. The SetURCBValues service,
visualised in figure 2.9, allows the client to set up unbuffered reporting of changes in
values of data and data attributes.

33

Client System

GetServerDirectory(ObjectClass)

Y

e

- ———

Figure 2.8: Sequence Diagram for GetServerDirectory. The client can
choose either File or Logical Device as ObjectClass.

Client System

SetURCBValues(URCBRef, FC)

N S

A

e Tt CEE R

- ———

Figure 2.9: Sequence Diagram for SetURCBValues. The client sends
parameters URCBReference, FunctionalConstraints and up to 10 other
optional parameters

2.2.2 Scenario 2: Event based double alarm

A safety control relay on a transformer is monitored by a double input. The safety
relay has two outputs for monitoring of state. Input 1 is activated and input 2 is not
activated when relay is ON. When relay is switched to OFF, input 1 is switched to
OFF and input 2 is switched to ON. If relay is not switched properly input 2 is not
activated and none of the inputs are activated. This state is not allowed and has to be
reported as an immediate state which is considered "Not allowed” and is reported at

the SCADA as relay failure.

Since this scenario involves many of the same aspects as scenario 1, most of the same
functionality is needed. It would be ideal to map the case to a LN for switching since

34

that is essentially what is being performed in this case.

An important aspect in this case is that the state of the relay is monitored by two
inputs instead of one, and that it is necessary for the data attribute for the state to
be able to represent a bad state as well as on/off.

As mentioned in the previous scenario, the way inputs are mapped to elements in the
data model are outside the scope of IEC61850. The important thing is that they are
mapped to an element which can represent a bad state. This is achieved by data class
DPC (Controllable double point, defined in 7.5.3 of [10]). This data class contains a
status value which can assume the four values on, off, intermediate-state and
bad-state.

The data class DPS for Double Point Status also contains such a value, but DPS is not
included in any of the predefined logical nodes of [11]. DPC on the other hand is part
of the circuit switch LN, XSWI. It would therefore be ideal to have XSWI implemented
and have the two monitoring inputs mapped to the data attribute XSWI.Pos.stVval.

The same services are required for this case as for the previous one.

2.2.3 Scenario 3: Control physical output pulse on RTU

From the SCADA it should be possible to control a physical output relay on the RTU.
The output is activated as a pulse with a duration of 5 seconds. The control message
from the SCADA should be assigned a system time stamp, and the RTU should verify
that the control message has a valid time - e.g. not older than 120 seconds. If the
message is older than 120 seconds the control message has to be ignored. The complete
control procedure should include a "select and execute” procedure in order to ensure
that you only control output from the SCADA that was really intended to be controlled.

The Control model defined in clause 17 of [9] adds five services for controlling out-
puts. These are explained in 2.1.7 and are the ones needed for controlling an output
with select-and-execute procedure or select-before-operate (SBO) which is the term
used in the standard. The control model also allows for a deselect timer to be set to
e.g. 120 seconds.

One of these services, TimeActivatedOperate, provides the possibility to set a times-
tamp for when the control command shall be issued. However, none of the services
include parameters for the duration of the control, in this case the duration of the
pulse. Therefore, the ACSI does not include functionality for the duration of a com-

35

mand.

Such an issue could be handled by the piece of software mapping of IEC61850 objects
to inputs and outputs on the RTU. For example, some operations could be defined to
always last e.g. 5 or 10 seconds. But the duration could not be sent as a parameter in
requests to services of the standard.

It is also possible to imagine that the functionality can be implemented in the client.
This functionality could be composed of invocations of SelectWithValue, Cancel and
CommandTermination, but the client would have to wait for the proper amount of
time before issuing the control commands deactivating the output again. Such a so-
lution could lead to inaccurate durations due to delays in transmission.

This scenario does not relate to a specific type of logical nodes.

2.2.4 Scenario 4: Send alarm setpoint to RTU

From the SCADA it should be able to set an alarm setpoint to level alarm control of
analogue inputs. The alarm setpoint is in this case an engineering 14 bit value used
internally in the RTU for setting properties for level alarms for e.g. voltage, current
and power measurements realized via physical analogue inputs on the RTU. In gen-
eral the same requirements for time stamp evaluation and "select and execute” has to
be considered.

In order for this scenario to be implemented, the analogue inputs shall be mapped to
LNs containing data objects of type MV (measured value) or CMV (complex measured
value). These data objects contain the attribute db (deadband) which can be set to a
proper value. The deadband makes sure that the magnitude of the input signal, the
mag atttribute which is an analogue value, is not changed unless the instantaneous
magnitude instMag changes by a margin greater than the value of the deadband.

The MV data class also has an attribute called rangeC of type RangeConfig, which
allows a min and max to be set. These can then prescribe the range for which the
signal is inside bounds and thereby what values shall cause an alarm to be sent.

2.2.5 Scenario 5: Event report of analogue input

Based on some predefined threshold values in the RTU, analogue floating point mea-
surements from analogue input on the RTU should be reported to the SCADA. The
threshold value should e.g. be a percentage value of the analogue measurement. When

36

the analogue measurement changes more than the defined threshold since last reported
value, the input value should be sent to the SCADA with time stamp.

This scenario requires exactly the same functionality as the previous one. The dead-
band value is set in units of 0.001% and can be set with values from 0 to 100 000.
That is, if a threshold of 5% of the measured value is desired, the deadband value can
be set to 5000.

2.2.6 Conclusion to Analysis of scenarios

This analysis has outlined some services, logical nodes and data which should be in-
cluded in the implementation of the IEC61850 server in order for the requirement
of the scenario to be fulfilled. A fair amount of extra functionality has been identi-
fied which is not immediately part of the IEC61850 standard, but which would be
needed in order for the IEC61850 server to be taken into practical use and handle
the scenarios mentioned. This includes functionality providing an operator with the
possibility to map inputs or combinations of inputs to elements in the IEC61850 data
model, specify the duration of a control of an output and assign priorities to event
reports. To conclude, the analysis of the scenarios has revealed that the standard and
the scenarios do not deal with exactly the same issues.

2.3 Analysis of the Brodersen RTU32

In order to put the software to use on the Brodersen RTU32, special attention needs
to be given to the environment on which the software shall ultimately run. Therefore
a brief analysis of the RTU will be given in this section.

The idea of using an RTU in a project like this is based on the fact that an RTU may
represent the substation in a communication network. The IEC61850 server running
on the RTU shall therefore contain a model of the substation with objects represent-
ing the components in the substation. The RTU shall be connected to the substation
components through the RTU’s inputs and outputs, and the software on the RTU
shall keep track of the structure of the substation and its components, measurements
of values of data related to these components and also the software shall carry out
proper operations depending on changes in these data.

The RTU32 has a database in a DLL file which is connected with the I/O ports. This
file is called wtoo132.d11. It is possible to read and write from and to the I/O ports
by use of e.g. Visual Basic applications issuing requests to the DLL. This DLL shall be
the means of all real-time communication between the substation and the IEC61850

37

Server. In addition to this communication, preconfiguration shall be possible by the
use of an SCL file.

The RTUS32 runs Windows CE 5.0 which is a minimalistic version of Windows. This
does not mean that it is the "normal” Windows, with some functionality taken away.
Windows CE is an altogether different operating system with a different kernel com-
pared to other Windows versions, however it has some similarities to more common
versions of Windows. Windows CE is optimized for computers with minimal storage
such as an RTU.

On Windows CE, the NET Compact Framework (NET CF) must be used. Version
2.0 of 2005 is part of the RTU setup. The Compact Framework is a down-scaled ver-
sion of the full .NET Framework which implements approximately 30% of the full
NET Framework Class Library [19]. As a consequence, a considerable amount of
functionality is not available on the RTU such as hosting web services, remoting,
SOAP serialisation, binary serialisation and some socket options. These shortcom-
ings must be kept in mind in the design proces and will make the implementation
more cumbersome than if it were performed on a full . NET Framework.

2.4 Specification of Requirements

Based on the previous sections, where the IEC61850 standard, the scenarios and the
RTU have been analysed, a specification of requirements shall be prepared for the
design and implementation of the basic IEC61850 server. Because of the vast func-
tionality and considerations included in the standard, the goal of this project cannot
be to produce a complete IEC61850 compliant implementation.

As the analysis of scenarios provided by Brodersen Controls A/S showed, there are a
number of requirements suggested in the practical application of the RTU which are
not dealt with in the standard. The requirements for the implementation of the basic
IEC61850 server of this project must therefore be made carefully and with consider-
ation given to to the standard.

The fact that the solution shall run on a compact framework under Windows CE also
makes it necessary to consider carefully which requirements can be specified, since a
larger portion of the implementation must be made "from scratch" than would be the
case on a normal .NET framework.

It has been chosen to prepare the specification of requirements based on the desire to
implement a basic IEC61850 server. Priority shall therefore not be given to some of

38

the RTU specific functionality suggested in the scenarios but on basic functionality of
an IEC61850 server. This requires a basic implementation of the data model and ba-
sic services. Furthermore, it shall be attempted to make the implementation generic
so that the server can later be extended to cover the whole IEC61850 standard and
also RTU-specific functionality as mentioned in the scenarios.

The following requirements have been chosen:
Specification of Requirements

e The solution shall implement a basic IEC61850 server which is able to run on a
Brodersen RTU32 under Windows CE

e It shall be possible to read a configuration file in SCL format for a substation

and have a data model with a server instance generated on the basis of the SCL
file

e A client shall be able to connect to the server and request basic ACSI services
such as reporting and logging

e The solution should be generic so that extension is possible later

Implied in these requirements is a delimitation of the focus of the project. It is not
required, for instance, that the commununication between the client and the server
complies with the SCSMs proposed in the IEC61850 standard.

It is not required that all conceivable cases shall be handled, that is, not all logi-
cal nodes, data and services shall be implemented. This is a necessary delimitation
because of the comprehensive nature of the standard. Furthermore, some of the func-
tionality suggested in the scenarios provided by Brodersen Controls A/S is not in-
cluded in the requirements since they are outside the scope of IEC61850 and would
make the focus of the project too unclear.

2.5 Conclusion

In this chapter, an analysis has been presented of the IEC61850 standard, the sce-
narios provided by Brodersen Controls A/S and the Brodersen RTU. The analysis
of the standard has given an overview of the basic concepts of the IEC61850 stan-
dard and a basic understanding of the classes involved in the comprehensive model
which the standard is based on. The classes of the Abstract Communication Ser-
vice Interface with information models and information exchange models have been
explained briefly. The specific communication service mappings, SCSMs, of the stan-
dard have also been explained as well as the substation configuration description
language, SCL.

39

The analysis of the scenarios has placed the RTU functionality desired by Brodersen
Controls A/S in relation to the standard. Logical nodes and services required for the
scenarios have been identified as well as other functionality that needs to be imple-
mented in order to meet the requirements of the scenarios. Part of this functionality
is outside the scope of the standard.

The analysis of the RTU32 has outlined the possibilities and limitations of the RTU
on which the implementation shall run. Based on these analyses, a specification
of requirements has been given. The requirements focus on implementing a basic
IEC61850 server with a data model and basic ACSI services available. Out of scope
requirements suggested in the scenarios are not included. Also, the SCSMs of the
standard are not included.

To conclude this chapter, this analysis has led to the point where design and imple-
mentation can commence. This will be the subject of the next two chapters.

40

CHAPTER 3

DESIGN

In this chapter, the design of the solution will be presented. First, the overall archi-
tecture of the chosen solution will be presented and then the design of the different
parts and modules will be explained. The design will be made with the analysis as
a starting point. In particular the specification of requirements is important to be
kept in mind during the design proces. The solution must be designed to meet the
requirements of 2.4. Thus, a design must be proposed for the following:

e A basic IEC61850 server which is able to run on a Brodersen RTU32 under
Windows CE

e A mechanism for initialising and configuring the system by use of an SCL file

e A client/server connection with which allows a client to request IEC61850 ser-
vices such as reporting and logging

Many requirements for services have been visualised by the use of sequence diagrams
in chapter 2 and some of these diagrams will be elaborated throughout this chapter
to illustrate the ideas behind the design proces.

3.1 Architecture of Solution

In this section an overview is given of the architecture of the chosen solution. This is
done by a diagram showing the modules of which the solution is composed. The dia-
gram is shown in figure 3.1. The division into these modules is based on the analysis
of chapter 2. Later the modules are explained individually.

The module called Information Model contains the data model of the IEC61850 server
and is explained in section 3.2. This module is based on the analysis of sections 2.1.3,
2.1.5 and 2.1.6. The Information Exchange Model is the module where the services
of the IEC61850 are contained. The design of the module is based on the analysis of
sections 2.1.5 and 2.1.7. This module is explained in section 3.3. Communication to
client is handled by the Communication module which is explained in sections 3.4.
The device module is explained in section 3.5 and contains classes and methods for

41

providing basic input/output to and from the RTU. This module is based on the anal-
ysis of section 2.3. Finally, the substation module functions as the main component
which initialises the system. It communicates with - and uses - the other modules. It
is explained in section 3.6.

Substation ’

Communication | Information Exchange Model Information Model | Device Model ’

Figure 3.1: Architecture of solution

In the following, each of these modules shall be described through their own UML
class diagrams and some of the classes, attributes and methods of the modules shall
be briefly explained.

3.2 Information Model

The information model of the IEC61850 standard is designed in the module shown
in figure 3.2. It is hierarchically structured according to the IEC61850 data model
described in 2.1.3. The topmost object in the data model is the Server which is con-
tained in an IED in a substation (see section 3.6). There may be zero or more servers
in an IED, typically at least one. Each server contains one or more access points, and
an IEC61850 data model comprised of logical devices, logical nodes, data and data
attributes.

The Server class may be seen as a collection of the objects below it in the data model.
In compliance with the data model, it also has fields for files, associations of clients
and access points. The Server also has methods for creating all the objects it contains,
i.e. logical devices, logical nodes and so on. Thus, all of these objects are initially
created by the Server class. The Server class contains a sorted list of object references
and corresponding references to instances of the objects. This allows all objects of the
data model to be accessed from the server, given the object reference of the object.
This is achieved by the method getReferencedObject. Methods are also provided
for removing references.

42

() IServices

| Server
Class

+ Fields

=l Properties

i@f‘ ServiceAccessPoint
= Methods

v addhewReference
addobserver
Contains
CreateDataset
DeleteDataset
GetalDatavalues
ZEtBRCEYalues
GetDakabefinitian
GetDatalirectory
GetDataSetDirectary
getDataSetMame
GetDataSetValues
GetDakavalues
GetLCBYalues
GetLogicalDeviceDireckary
GetLogicaltodeDirectory
GetLogicalModeFromDsRef
GetlogStatusvalues
getReferencedObject
GetServerDirectory
GetURCEYalues
new_ompositeld Th
newDATA
nemwbatadttribute
newDatadttributeComponent
newbataset
newlogControlBlock
newlogicalDevice
newlogicalbode
newReportControlBlock.
GueryLoghfter
QueryLogByTime
removeReference
Server
SetBRCBYalues
SetDatasetvalues
SetDataValues
SetLCBYalues
SetURCEYalues
StartServer
UpdateData

e &

rY Y Y YWY

[o o S o 4

5

Lo o o o SR o oF o o S o O S ol o S o S S O O S o ¢

» |

' LogicalDevices

» |

| LogicalDevice

' Logicalodes

-}

| LogicalNode =3
Class Class
r r
=l Properties = Properties
ﬁ* desc ﬁ* Eufferedreport...
%1 Desc 5 Dataset
i LDMame 2 LNMame
5 LoRef 2 LhRef
=l Methods & LOG
% LogicalDevice ﬁ‘ LogCantralBlack
= UnBufferedRepar .
=l Methods
& GetlogicalNodeDi...
W LogicalMode
o Data
' Datasttribute
(Datattribute A)
- = Clasz
DATA 5 = ObzervingData
Clasz d
- r =l Fields
=l Fields ¢ _isComposite
#¢ _Datafttributes 4¥ _ParentDATA .
¢ _isComposite ¢ _parentDatadttri...
=l Propetties =l Properties
e - o
f Datahlame S aentbal 2 FunctionalConstr ...
T DataRef 1 isComposite
ﬁj isZomposite %1 isHighestOrder i
#1 Presence ff Nae 4 ParentDatadttribuke
=l Methods “r Presence
& addFCDA ﬁ* Ref
W DATA ﬁ‘ Traop
@ getFCDAMWIthFC B value
=l Methods

% isFunctionalCaonst....

= Data

 Datahttribute

¢ Datafttributes

Figure 3.2: UML Class Diagram for the information model module with
attributes, properties and methods

When making the design of the data model it is necessary to decide whether the var-
ious logical nodes should be designed as individual classes or just instances of the
same logical node class. The standard does not actually prescribe rigidly how this

should be done.

The refined compatible logical node classes defined in [11] are called specialisations
suggesting that they are to be defined as individual subclasses of the abstract logical

43

node class. However, the definition of the abstract logical node class in [9] contains
a list of arbitrary length containing data objects. This means that the refined logical
nodes do not as a matter of fact introduce anything new to the logical node object of
[9]. And this, in turn, means that the refined classes are not stringent specialisations
of the abstract logical node class.

As the class diagram shows, the decision has been made to represent all logical node
classes by the same class in the solution, namely the class LogicalNode. This has
been decided since it allows a generic approach and since it does not limit this imple-
mentation notably.

It might be argued that restrictions such as rules regarding mandatory and optional
attributes will be far more difficult to handle with the chosen generic approach than
would be the case had each logical node been defined in its own class. While this is
valid, it is still possible to construct a mechanism which checks for compliance with
the rules. Furthermore, the check can also be made before entries are made into the
data model as is the case with this solution. This will be explained in 3.7. Finally, it
is easily possible to extend the data model with specialisations if it should be desired,
so designing the solution with only one logical node class does not limit the possible
use of the solution. These considerations are the basis for the design choice of using
only one logical node class.

For the data class, the same holds. The abstract data class is defined in [9] and re-
fined in [10]. The abstract data class contains sufficient attributes for it to represent
all kinds of data as defined in [9]. Therefore the abstract data class is the only one
used in this solution.

Apart from these decisions, the design of the information model is fairly straightfor-
ward. The Server class contains a list of logical devices as a property, the LogicalDe-
vice class contains a list of logical nodes as a property and so on. This is completely
in keeping with the hierarchy of the data model as described in section 2.1.3.

As the class diagram in figure 3.2 shows, the DATA class has properties for both data
and data attributes (named Data and DataAttribute). This stems from the fact
that the DATA class is recursively defined, so that an instance of the data class may
contain yet another instance of its own class in addition to containing data attributes.
A data attribute may also contain a data attribute as a property since it too is recur-
sively defined.

As mentioned in section 2.1.5, some of the services made available by the ACSI are
grouped as basic service models. Requests for such services can be handled solely

44

by use of the data model. These are, for instance, GetServerDirectory and GetLogi-
calDeviceDirectory. In figure 3.3, a sequence diagram is shown which visualises these
two services. The TCPSocket class in the figure is part of the Communication module
which is explained in section 3.4.

TCPSocket Server LogicalDevice

GetServerDirectory(ObjectClass)

B S

GetServerDirectory(ObjectClass)

LDReferences[1..n]

LDReferences[1..n]

il

GetL.D.Dir.(LDReference)

GetL.D.Dir.(LDReference)

G SRS s, ; S—

get(References)

LnReferences[1..n]

LnReferences[1..n]

LnReferences[1..n]

-

W

Figure 3.3: Elaborated sequence diagram for services GetServerDirec-
tory and GetLogicalDeviceDirectory

The logical node class contains not only data, but also datasets and control blocks
for reporting and logging which allow events to be reported and logged, according to
trigger options. The Report and Log services require such control blocks and therefore
these control blocks are designed in the module called information exchange model
(section 3.3).

3.3 Information Exchange Model

The information exchange model is the part of the standard that makes services avail-
able to a client (other than the basic services) and thus enables a client to monitor
changes of values in the data model, review log entries and control outputs among

45

other things. This module is shown in figure 3.4.

() IDataObserver

| DATASET
Class

< ObservingDataSet

=l Properties
i@,:‘ Desc
Z D3MemberRef
H DSName
2 DIRef
ﬁ:' isDeletable
= Methods
v DATASET
i Update

() 1CBObserver

(ReportHandler
Clazs

=l Properties
2 Buffer
=l Methods
W add
@ ReportHandler
i send

»»

o

{ BRCB

Clazs
+RCE

=l Properties
% EntryID
5 PurgeBuUf
=l Methods
» BRCE
@ nokifyReport

() IDataSetObserver
s 1)
Abstract Class
= ObservingE
| ReB A " Lce %
abstract Class lass
+CB +CB
r r
=l Properties = Methods
“5 BufTm 5% createMewEntry
“ Confrey W LB
i Desc & notifyLag
= e
5T RptID () ICBObserver
T Sghum —L .
= Methods e -
lass
W neweEntryID 7
W RCE] = Fields
ﬁ_ ' 4# EntryID
¢ replacelnlog
=l Properties
= [URCE 7 5 Buffersize
Clazs ff" Entry
+RCB 5 Loghlame
r r 5 LogRef
= Properties flﬁd MewEnty
Z Resy 5 MewEntrTm
o Methaods f,:‘ CldEntr
W notifyRepart S OldEntrTm
& URCE =l Methods
& add
W LG

Figure 3.4: UML Class Diagram for the information exchange model
module with attributes, properties and methods

The module consists of control block classes BRCB for buffered reporting, URCB
for unbuffered reporting and LCB for logging. These are specialisations of an ab-
stract class CB (control block) which shall interact with the DATASET class. Also
the Log class, Report class and ReportHandler class are contained in the information
exchange model.

46

3.3.1 Unbuffered Reporting

BRCB and URCB are control blocks for reporting. The DATASET and control block
objects are instantiated in a logical node. If a logical node is declared with an un-
buffered report control block, the URCB object is included with a reference to the

DATASET object as well as trigger options, a report ID, a report name and other at-
tributes. This shall be governed by the SCL file.

The trigger options can be dchg for data change, dupd for data update and gchg for
quality change. Each of these may be set in the SCL file. If dchg is set, each change
to one of the data attributes of the data object in the contained DATASET will trigger
a report to be sent to the client.

This is achieved by an observer design pattern, which is explained shortly. A Report
object is created which maintains a list of report ID, time entry and entry data. The
entry data is contained in another class, ReportEntryData, which defines a list of
data, data attributes and a reason code for inclusion. The URCB collects DATA, trig-
gered by events (changes and updates) for an amount of time defined in the attribute
bufTm, and for each event, an entry is made into the Report object. After the specified
amount of time, the Report is sent to the ReportHandler object which is responsible
of transmitting the report to the client.

3.3.2 Buffered Reporting

If the logical node instead contains a buffered report control block, the BRCB (instead
of URCB) object is included containing a reference to the DATASET object and trigger
options. The procedure is similar to that for BRCB until the point after it is sent to
the ReportHandler, as will be illustrated shortly.

The procedure for buffered reporting is visualised in a sequence diagram in figure
3.5. This diagram shows which classes are involved in creating a report and how it
happens. This part of the procedure would be identical to that unbuffered reporting
except that the name would then be URCB.

The ReportHandler shall take into account whether the report is buffered or un-
buffered. The further procedure shall make use of the communication module which
contains a class TCPSocket which is used for communication with a client. Figure
3.6 visualises this procedure. If there is no connection to the client at the time when
ReportHandler attempts to transmit the report, then the report is added to the buffer
and ReportHandler attempts to transmit the report again the next time a report is
sent to it.

For unbuffered reporting, the report would just be discarded if no connection were
available at that time.

47

DataSet IDataSetObserver BRCB Report ReportHandler

Notify(value, rcb)

, S

! i ! !
i ! i i
i ! i i
i - 1 i
i ol i i
I i " 1 1
E ! Notlfy(valuie) Report() i !
i : : > |
E | @: newEntry(value) ! |
i | i " i
I H 1 1 1
I H 1 1 1
! : ! ! :
E Notify(value, rcb) b-! i i i
] H 1 1 1
I H 1 1 1
i [Notify(value) ! | i
I - Y 1 1 1
? ! > ! :
! : ! newEntry(value) ! i
i ! i i i
i - i —P 1
i ! i i i
1 I 1 - 1
I

E i ®E sendReport() i
i i i

Figure 3.5: Elaborated sequence diagram for reporting prior to server/-
client communication. The first clock indicates that a timer is started
when the new entry is sent to Report. The second clock indicates a time
out after which the report is sent to the client. Hold for buffered and
unbuffered reporting.

ReportHandler TCPSocket Client
: : :
1 1 1
Report i | H
L i i
i trySend(report) 1
1 ’] 1
1 1 1
: X >
! buf.add(report) ! i
.~ i
trySend(report) i
i i
1

sending(report)

_l

Figure 3.6: Elaborated sequence diagram for buffered reporting from
server to client. If no connection is present, indicated by the X, the report
is added to the buffer. Holds only for buffered reporting.

3.3.3 Logging

LCB is the control block for logging. It is instantiated in the logical node along with
the DATASET. If a logical node contains data for logging, it includes a LCB object
with a reference to the DATASET. Based on the DATASET object, the observer design
pattern notifies the LCB object whenever the relevant data change, and the LCB
object causes the new values to be written in the LOG for later review. The data

48

written to the LOG is defined by the LogEntryData class which contains attributes
for the data, data attributes, values and timestamp for each inclusion. The procedure
is visualised in the sequence diagram in figure 3.7.

DataSet IDataSetObserver LCB LOG

Notify(value, log)

Notify(value)

newEntry(value)

S, [e—
S, A

PARROPNIROL, o]

Figure 3.7: Elaborated sequence diagram for logging

3.3.4 Observer Pattern

The values in the data model may change at any time as a result of a control services
issued by the client or changes in inputs. In order for the data model to be contin-
uously updated according to these changes, an observer pattern is included in the
design. This promotes low coupling between the classes of different modules which is
useful for a generic approach. Also it avoids the unnecessary amount of extra CPU
power it would take to use polling instead of an observer. With the observer pattern, a
message is sent when values are changed, so the subscribing object is notified when-
ever something important happens.

The general observer design pattern is useful in more than one case. Measured inputs
may change, and control requests may change data values directly, causing outputs to
change afterwards. Furthermore, the report and logging services are to monitor the
data model through a DATASET object and shall issue transmissions upon certain
changes. To provide the overview of how these scenarios may be solved by using an
observer design pattern, the UML class diagram of a general observer is shown in
figure 3.8.

As the figure illustrates, a concrete observer is able to monitor a concrete subject
through the respective abstract classes. This is the general design of the pattern,
and in the design of the IEC61850 server, this is used in three cases: the DATASET
class monitors DATA classes, the ReportHandler class monitors the RCB class and
the LOG class monitors the LCB class.

49

>
»

Subject Observer

Abstract Class Abstract Class
i = Methods i = Methods
i ¥ Attach ¥ Update
w Detach %
¥ Notify T
? A /7 ”~
ConcreteSubject A ConcreteObserver =
Class Class
+ Subject + Observer
= Fields = Fields
47 subjectState ¢ observerState
= Methods = Methods
¥ GetState ¥ Update
N _ X _4

Figure 3.8: UML Class Diagram for the general Observer design pattern
3.4 Communication

According to the standard, the server shall be accompanied by a specific communi-
cation service mapping (SCSM) supplying the communication platform between the
server and clients. The standard proposes mappings to the MMS protocol and to se-
rial undirectional multidrop point to point link with Ethernet. It has been suggested
that web services will be the basis of an alternative SCSM of the standard in the near
future.

For this project, priority is not given to the implementation of an SCSM. Therefore it
has been chosen to disregard the SCSMs of the standard since they would be a large
task to implement. They are actually comprised of other standards, themselves. Web
services would have been ideal to use for a project like this, and they are also likely to
be incorporated as an SCSM in a future version of the IEC61850 standard!. However,
the Compact Framework is not intended to be used as a server and therefore does not
currently include functionality for hosting web services. Therefore a simpler form of
communication is needed, which can make a basic client/server connection possible.

This connection will be provided in the communication module which uses a TCP
Socket and sends data back and forth by use of serialisation. The module is shown
in the class diagram of figure . As the figure shows, the module is composed of the
TCPSocket class, the Envelope class and the ConnectionHelper class. The TCPSocket

IThis claim is based on the fact that mapping to web services is under progress for the IEC61400-25
standard which is based on IEC61850

50

object shall listen to incoming requests and direct them to the correct service calls in
the exchange model or information model. The interfaces IReportExchangeModel and
IExchangeModel handle this directing. Similarly, the TCPSocket class handles trans-
missions initiated by the server such as reports which shall be sent to the client. In

() IReportService

{ TCPSocket) |

Class
r
= Methods
2% DoCommand
Repaort

W
2% runl
2% runz
& Stark
& Stop
W TCPSocket

Figure 3.9: Methods of the communication module

order for the client and server to communicate in the same format, all transmissions
are made in a format defined by the Envelope class. It has a property for function
and a list of parameters. Depending on the function call contained in the envelope,
the parameters are parsed accordingly.

Furthermore, with the socket approach, the client and server can only transmit bi-
nary data back and forth and they must know beforehand the size of objects which
are to be transmitted. The client and server shall both have one TCPSocket opbject
running at all times, each with two sockets created. The TCPSocket object on both
sides shall continuously listen for requests of a fixed size. When the request arrives,
it contains the length of the transmission to follow. Having received the length, the
TCPSocket then listens for an object of the specified length. When the transmission
is received, the TCPSocket resumes listening for length information.

Furtermore, all data to be transmitted must be converted to binary form. This is ac-
complished by the ConnectionHelper class which uses a compact formatter provided
under the LGPL license by Angelo Scotto [21]. The compact formatter is a serialiser
which is able to run on the Compact Framework.

51

3.5 Device Model

The RTU module is intended to provide a link between the information model and
the input/output of the RTU. It allows an input or output port to be linked to a data
attribute in the data model loaded in the main program. This module must further
make sure that if an input is connected to a data attribute in the data model, its
value must be measured repeatedly with short intervals and changes to the value
of the input must be immediately reflected in the corresponding value in the data
model. Also it must make sure that if an output port is connected to an attribute in
the data model, the output shall be changed immediately upon changes to the value
of the attribute. This is achieved through two interfaces, one for each direction. The

() IData0bserver

() IDevice\Wricer [DeviceReader
[wTDDL32 z | [RTU32 % | | DeviceCommunication (% |
Class Class Class
i i
= Methods =l Propetties =l Fields
% LogMessage fr‘ PTUN _Skr_min P server
W ReadFirstLogMessage (+ 1 overload) = Methods = Methods
i ReadhextLogMessage (+ 1 overload) @ init & addobserver
 ReadhodeSize T ReadInt DeviceCommunication
© Readword & RTUZZ % Update
@ WirikeWord ¥ Running W updatevalue
W WTool32Close & Start \
@ W Tool32Init @ Stop
&¥ testCasel

& ¥ bestCaseZ
o7 bestCased
5% LestCased
& ¥ bestCases
W update

Figure 3.10: UML Class Diagram for the Device module with attributes,
properties and methods

RTU32 class contains methods for reading and writing the wtool32 database which
is the input and output ports. The reading is performed by RTU32 class which con-
tinuously scans the inputs for changes and communicates them to the data model via
IDeviceReader. When inputs are changed, the RTU notifies the DeviceCommunica-
tion class which then causes the data model to be updated through IDeviceReader
interface. The update procedure of the data model is visualised in the sequence dia-
gram in figure 3.11.

When output-related data attributes are changed in the data model, the DeviceCom-
munication class is notified by the observer design pattern. The observer is imple-
mented in class ObservingData through interface IDataObserver. The DeviceCom-
munication class causes the RTUS32 class to write the correct value to the I/O database.

52

DEVICE wtool32 RTU32 DeviceComm Data DataSet

input

-

S

ReadDB(out value)
Notify(ref, value)

update(ref, value)

Notify(ref, Trg)

U (|
5 A

.

Figure 3.11: Sequence Diagram for update of data model based on
changes in inputs. Interfaces to observer pattern are left out, but are
represented by notify () -calls

This is performed via the IDeviceWriter interface. As soon as the value is written to
the database, the output port is physically set correspondingly by the RTU.

IDataObserver DeviceComm RTU32 W32Tools DEVICE

1
Notify(ref, value)

Notify(ref, value)

—

write(value)

setOutput(value)

i e o o Wy

Y

Y

Figure 3.12: Sequence Diagram for update of RTU based on changes in
outputs. Interfaces to observer pattern are left out, but are represented
by notify () -calls

3.6 Substation Module

The Substation module initialises the system and is composed of:
e A Substation class initialising the other modules

e An SCLParser class which parses an SCL configuration file for the substation
configuration

e An IED class which contains the server

It is illustrated in figure 3.13. The initialisation is based on the parsing of the SCL
file. The parser is explained in section refsec:scldesign.

The initialisation causes the parser to read the SCL file given, and generate a full
data model based on the contents of the SCL file. It also creates the sockets of the

53

| |

| substation

| |

| SCLParser

lass Clazs
I I
= Methods = Fields
2" addDataSetObseryver # DComm
4* findNodeType # iServices
& getAttributevalueByMame # rbu3z
4" getBasicType # kcpSocket
4" getModeValuebyId = Methods
& QetTriggers W init
& parsefccessPoink W@ StartComm
4 ¥ parseBDA iy StartDevice
" parseDa @ Stop
47 parseDAl iy Substation
& parseDataSet
" parseDAType
2" parseDo
& parseDol
& parseDOType
2" parseEnumType
2" parseFCDA
4" parseHeader
& parselED
&% parselModeType
4" parseLogControl
av parseLogicalbevice
4" parseLogicalMode
4" parse0ptFlds % IED
av parseReportConkral - .
4" parseRptEnabled - IED £
4 parsesh] e -
& parsesho
4" parseServer = Pr?perties
2" parseServices '_‘T' Mame
2% parseTrgOps B Server
i parsexML =l Methods
i SCLParser i IED

Figure 3.13: UML Class Diagram for the Substation module with at-
tributes, properties and methods

communication module and thus "turns on" the server. The IED class represents the
object which contains the server object of the data model.

54

3.7 SCL Configuration

According to the IEC61850 standard, SCL is the means of configuring a substation
and describing such a configuration. SCL was introduced in 2.1.4. A full-scale com-
mercial IEC61850 server should probably include a tool for editing the SCL configu-
ration graphically. No such tool is part of this design, but an SCL parser is included.
The SCL files parsed by this parser can be generated either manually, or by the use
of a third-party SCL editor.

For this project, Kalki SCL Manager has been applied. Kalki SCL Manager is a
graphical editor for configuring substations and is developed by Kalki Communica-
tion Technologies [17]. A trial version can be downloaded from Kalki’s website, where
the SCL Manager is described as "the leading Substation Configuration Software
Platform, that enables implementation of complete configuration and engineering
schemes as per IEC 61850." [17]

The proposed solution is not dependent on the Kalki SCL: Manager in any way. This
piece of software has only been used as a quick way of constructing SCL test files rep-
resenting substations according to the rules laid out in the standard. The Kalki SCL
Manager rejects files which do not comply with the IEC61850 standard. It should
be mentioned that SCL files generated by Kalki SCL Manager are usually valid ac-
cording to the Siemens sponsored SCD file validation on [1]. The SCL files used for
testing in relation with this project have been validated according to the IEC61850
standsard.

The Substation class is the main program and it invokes the SCLParser class (see
figure 3.13) which is used to read and parse the validated SCL configuration file.
The parsed content of the SCL file is used to generate a SERVER instance populated
with logical devices, logical nodes etc. according to the SCL configuration file and in
compliance with the IEC61850 data model.

3.8 Conclusion

In this chapter, the design of the solution has been presented. The solution has
been divided into five modules, substation, information model, information exchange
model, device model and communication. Each of these modules has been explained
by use of UML class diagrams illustrating involved classes and their properties and
methods. Also, some of the operations of each of the modules have been visualised by
sequence diagrams.

55

The information model is the module containing the data model which consists of the
server, logical devices, logical nodes, data and data attributes. The server has been
designed to keep track of the content of the entire model by maintaining a list of ob-
ject references. The information model can thereby handle basic IEC61850 service
requests such as GetServerDirectory and GetLogicalDeviceDirectory.

The information exchange model is the module making other service requests avail-
able, such as reporting and logging. It has been designed with the control blocks nec-
essary for buffered and unbuffered reporting as well as logging. Also the DATASET
class has been designed which couples control blocks with data in the data model.
Observer design pattern interfaces have been designed in suitable places to keep dif-
ferent objects updated based on changes of measured RTU inputs and user controlled
changes.

The communication module has been designed to allow basic server/client connection
and transmission of requests and responses. The communication is transmitted in
binary form and is serialised by a compact formatter. The communication module is
not designed according to the SCSMs of the IEC61850 standard.

The device model has been designed to provide input and output functionality to
the RTU. The RTU’s internal I/O database wtool32 is used to continuously monitor
changes in inputs. Data model entries are then correspondingly updated by use of
the observer design pattern. Similarly, if values in the data model are manipulated,
the RTU makes sure that any outputs which are connected to the changed values, are
correspondingly changed.

The substation module has been designed as the main program which initialises the
entire system based on the SCL configuration file.

Chapter 4 will present the implementation of the system.

56

E]
A2 las —;
QORI ()

|

Joday &

BIEAAUT oL
g = =

Adquzbo &

2

JensEsq0ant ()

.,

| |
S5E| D S5E|D SEE|D
£3)] Jioday) E3] ejegAaljujjioday) E3] Jajpueyjioday)
yodas & \—, podas & Jamaasqoanl ()
=y _ _ sanguaveRa o
1SR ABUIAIIED 4 A =
S5B| {] i [] i [] i 358D
13sv1va B B EieaBuIAREg0 4 &) T IUNWIWUO)RE01A3(
A S58| S5R|T 55R| A
jaceed S £ A73d4) £3)] aA7dn J £3)] SINqUIIYEIE] J JspEayanaa]]
» # I 13a435g0RIEAL ()
Jao|gioauoDadadpatang v_u_u_m__uh__._n_uu:_un_mm_uuhmtjmcj anquyEEa L P
-+ | SER|D T_
cr L
e | 2 L
ﬁ mmmn_u”. | £3] v1va JEUAMENASAL ()
F/M_ Agjuzbo) Ll | il m.., —_— uﬂ..m.u_m.n_ =
P
Anquzboy & 35E|D e
)
£ =PHr05d401
S5E| T 2) il /
N _ A, =Y % aponjenbo) anjalacyIodadl () Japosday A
e L i 84 N sepopeabol (&
S5B| S5B| : S3E[D) 1R
201 E3 a1 H1E3 g5 _\ =
J =] : y X, |._ r SEE[D
001 & A spogoquesbol & =i _/m_ a3 |
L — s58| -
£3] adaadgenbon). A aar B
J H.). sadnageato 5
. L=l
{ [L e —
; buEEgo 4 L= N E3] .._.u_umu_mn__.._m
i S58|D) 1R AR [—— Ly S . s ks i
......... v 153 & i e ,UE,MMH : £ ABAIBS | JmaEs uaREIsans A
o !
§ (= B FILA S5 :
i, PN g =Im ==y | O 4 =) g i E=mE =l g ﬁ._.u.
& FSeIegOARISE] | bvs W quingssaaogannes e
i _... mwu.. k s \
; S5E| T 12EAI5Y 55| S5E[T
i @& FITUASIS]] £3) JuI0gsSa0Y | £3) wie boag)

[

for the whole system

UML Class Diagram

Figure 3.14

57

CHAPTER 4

IMPLEMENTATION

Based on the analysis and design chapters, this chapter will present the implemen-
tation of the IEC61850 server. The implementation of the system will be presented
in the same order as in the design chapter. First, an overview of the general system
is given in section 4.1. Then, the implementation of the information model will be
explained in section 4.2. Section 4.3 describes the implementation of the information
exchange model. The communication model is described in section 4.4. The imple-
mentation of the device model is presented in section 4.5 and the substation module
which ties together the different modules, is described in section 4.6. Section 4.7
concludes the chapter.

4.1 Implementation of IEC61850 System

The implementation of the IEC61850 server shall be based on the design presented in
chapter 3. The implementation proces, therefore, is framed to a certain extent since
many important choices have already been made during the design. Thus, the design
of the system defines the system in broad outline, while the implementation consists
of deciding in more detail how the design is turned into a real software solution.

The implementation of the system has been carried out with Microsoft Visual Stu-
dio 2005 as one solution. The solution contains projects for each of the modules as
well as for other independent components used. The solution is contained in the
file ITEC61850.CompliantSolution.sln. The projects are added to the solution as
class libraries, and in order for a class library to run under Windows CE, they are
added by right-clicking the solution, selecting Add - New Project - Visual C# - Smart
Device - Windows CE 5.0 and selecting Class Library. This adds "A project for creat-
ing a .NET Compact Framework 2.0 class library (.dll) for Windows CE 5.0 and later".

The complete solution contains the following 12 projects:

e AuxFunc
Auxiliary functions for server/client communication and timer functionality

58

e IEC61850.CompliantSolution
The main program for running the solution on the RTU under Windows CE

e CompactFormatter
Functionality for serialising data on the compact framework

e CompactObserver
Observer design patterns implemented on the compact framework

e TEC61850.Communication
Functionality for creating a socket connection for client/server communication

e IEC61850.Device
Library with functions for I/O to and from RTU

e TEC61850.InformationExchangeModel
Library with classes of the information exchange model

e TEC61850.InformationModel
Library with classes of the information model

e TEC61850.Interfaces
Library with interfaces between modules of the solution

e TEC61850.Substation
Library with the substation class which initialises the substation model

e TEC61850.Types
Library with implementation of types specific for the IEC61850 server

e TEC61850.UnitTests
Unit tests of the system

As classes, methods and properties are explained throughout this chapter, the follow-
ing conventions shall be used to avoid misinterpretation and make the text concise.

e Class names are written in normal font, with capital first letter, for example
Server

e Methods are written in t ypewriter font with arguments placed in parenthesis,
but without their type

e Arguments of methods are written with small first letter if they are of simple
types such as string, int and bool. When they are of IEC61850-specific types,
they are given representative names and written in capital or capital first letter,
for instance in the method

newDataAttribute (DATA, name, FC, TrgOpList)

DATA is of type DATA, name is of the simple type string, FC is of type Func-
tionalConstraint and TrgOpList is a list of type TriggerConditions

59

As it has been mentioned previously, the IEC61850 server implemented here is not
a complete implementation fully compliant with the standard. However, it has been
attempted to make an implementation with the features needed to satisfy the require-
ments of section 2.4. In some cases, properties are added which eventually are not
used for the purpose intended in the standard. They have been included, neverthe-
less, in order to make the implementation generic and to make it a reasonable foun-
dation for future work. In such cases, the intent of the standard shall be explained for
such properties, though they may not be used for anything in this implementation.

4.2 Information Model

The implementation of the information model shall be based on the analysis of sec-
tion 2.1.3 and the design of section 3.2. The information model consists of classes for
the five elements of the data model, namely server, logical device, logical node, data
and data attributes. As previously explained, the data model is hierarchical and the
server is the topmost object in the model.

The Server class shall therefore contain the other classes in a hierarchical structure,
as was also illustrated in the UML class diagram of figure 3.2. This is accomplished
by declaring the Server object with a property LogicalDevices which is a list of
logical devices. The class LogicalDevice will then contain a property for logical nodes
and so on. This way, each of the objects of the data model are contained in an object
directly above it in the hierarchical data model.

As the Server is the topmost object in the data model, it is practical to make additional
functionality available to the Server class. For instance, the property References
contains a sorted list of pairs of object references and strings which represent the
referenced object. Recall from page 28 that an object reference has the format

LD/LN.Datal[.Datal. ...]]1DataAttribute[.DAComponent[. el

The list of references is intended to make it possible, via the Server, to reference
objects by their object reference. This way, all objects in the data model become ac-
cessible directly via the Server object. Objects may, however, be accessible in other
ways too, and as will be shown later, an object is also reachable from its containing
object, for instance a data object can be reached from the logical node object which
contains it. The Server class also contains methods for adding a new reference to
the list in the References-property and for removing a reference. These are called
addNewReference (objRef, 0Obj) and removeReference (objRef).

In addition to keeping track of all data model objects, the Server class has methods
for creating the objects of the data model. Thus, the whole content of the data model

60

shall be initially created through method calls to methods in the Server class. The
methods creating these objects are listed below:

newLogicalDevice (name, desc)

newLogicalNode (LD, 1nClass, inst, prefix, desc)
newDATA (LN, name)

newCompositeDATA (DATALl, name)
newDataAttribute (DATA, name, FC, TrgOpList)
newDataAttributeComponent (ParentDATA, name)

Each of these methods work in a similar way. For example newDATA (LN, name)
adds the name of the DATA object to the list of DATA contained in the logical node
LN. Furthermore, a call is made to addNewRe ference which makes an entry into the
list of object references in Server.References-property. This makes sure that the
list of object references in the Server object is updated. As an example the code for
the method newLogicalNode () is given below:

public LogicalNode newLogicalNode (
LogicalDevice logicalDevice,
String 1nClass, String inst,
String prefix, String desc)

LogicalNode 1n = new LogicalNode () ;

In.LNName.Value = 1lnClass + inst;

In.LNRef.Reference =
logicalDevice.LDRef.ToString() + "/"+
prefix + 1nClass + inst;

logicalDevice.LogicalNodes.Add (1n);

addNewReference (1n.LNRef, 1n);

return 1n;

}

The initalisation of the system is based on the content of the SCL configuration file on
the RTU and this is explained in section 4.5. Furthermore, the data objects shall be
updated whenever inputs on the RTU are scanned. This scan is accomplished outside
the data model (see section 4.5), but the Server object contains the method used for
the updating proces. This method is called updateData ().

In addition to the methods mentioned above, the Server class finally has three meth-
ods for adding data sets and control blocks for reporting and logging. These are added
in exactly the same manner as the data model objects, but are always added to a log-
ical node in compliance with the IEC61850 standard. The methods are defined as
follows:

newDataSet (LN, name, desc, isDeletable)
newReportControlBlock (LN, name, datSet, intgPd, confRev, bufTime,

61

buffered, rptID, desc, OptFldsList, TrgOp,
enabled, ReportHandler)
newLogControlBlock (LN, name, datSet, logName)

As such, these objects are related to the information exchange model rather than
the information model, but they shall be contained in logical nodes and are therefore
created by the Server object and kept in the References-property along with object
references of the data model.

The logical device, logical node, data and data attribute are defined in the classes Log-
icalDevice, LogicalNode, DATA and DataAttribute. Each may be seen as a container
of objects directly beneath it in the data model. The containers are implemented as
lists, accessible through the object’s properties.

The logical node, however, is a special class in IEC61850 terms, and therefore, the
LogicalNode class has a number of additional properties for the information exchange
model, namely DataSet, BufferedReportControlBlock, UnBufferedReport—
ControlBlock, LogControlBlock and LOG. The use of these is explained in sec-
tion 4.3.

The DATA class contains a property DataAttribute which is a list of the contained
data attributes. The DATA class is defined as a subclass of the ObservingData class
of the CompactObserver library. The ObservingData class contains methods imple-
menting the observer design pattern as described in section 3.3.4. The ObservingData
class corresponds to the Subject class in the example in figure 3.8. It contains meth-
ods Notify, Attach and Detach.

These methods allow a concrete observer, in this case a DATASET object, to be at-
tached to the data object, i.e. to subscribe to changes or updates in the particular
data object. The DATA class corresponds to the ConcreteSubject in the figure 3.8
while the IDataObserver interface is exemplified by the Observer in the figure.

The DATASET (concrete observer) can also be detached, but as long as it is attached,
the DATA object will notify the DATASET object of any data attribute value changes
or updates, depending on the trigger conditions selected.

The idea of this whole construction is that a measurement of the inputs to the RTU
shall immediately be written to the correct data object in the data model, and shall
then propagate immediately to the DATASET which is used for reporting and log-
ging. This allows a report to be transmitted and inform clients of the changes as they
happen and without polling.

62

The DATASET correspondingly contains the inherited method update which updates
the particular values which are changed.

In addition to the inherited methods for the observer design pattern, the DATA
class contains the FCDA property, a sorted list of object references and correspond-
ing functional constraints for those contained data attributes which have functional
constraints. In relation to this, the DATA class has the following three methods for
functional constraints:

e addFCDA (objRef, FC)
adds a functionally constrained data attribute with the specified object reference
and the specified functional constraint

e isFunctionalConstrained () returns true if the DATA object has any func-
tionally constrained data attributes

e getFCDAWithFC (FC) returns a list of object references of those data attributes
which have the specified functional constraint

4.3 Information Exchange Model

It has already been explained how objects of the DATASET class are updated through
the observer design pattern according to changes in the DATA objects of the data
model. The DATASET is an important object in relation to the information exchange
model in that it is used to tie a control block to the data that are to be reported, logged
or otherwise used in service requests from a client.

The DATASET class is defined as a subclass of the ObservingDataSet class and is also
defined to use the IDataObserver interface. This is done in order for the DATASET
to be monitored by the control blocks, i.e. objects of the class CB (for Control Block)
or its subclasses. Thus, the DATASET class appears in observer design patterns in
two different ways, both as the observer, in relation to DATA, and as the subject, in
relation to control blocks.

The DATASET has properties for name and object reference, like most other objects
relevant to the IEC61850 standard. Furthermore, it has a property isDeletable
of type boolean which is compliant with the standard, and indicates whether the
DATASET may be deleted. It also has a string property Desc which may optionally
contain a description of the DATASET.

The most important property of a DATASET object is DSMemberRe f which is a list of
object references contained in the DATASET. This list is initalised by the Server class

63

according to the SCL configuration file, and report control blocks and others monitor
the values of this the objects in this list.

The control blocks for information exchange services are defined with the abstract
class CB according to the standard. The CB class is defined as a subclass of class
ObservingCB. This is again to allow for monitoring in an observer pattern, not as a
demand of the standard. The CB class is monitored by the classes ReportHandler
and LOG so that reports and logs are updated and ready to be transmitted as soon as
changes take place in the data model and without the need of polling.

The CB class has properties for name, reference, optional fields, whether it is enabled
or not, trigger conditions and a property for integrity period, indicating the time be-
tween periodical transmissions to ensure integrity of reports and logs. Furthermore,
the CB class has a property Dat Set which is the object reference of the DATASET
monitored by the control block.

The information exchange model is extended further according to the standard with
two subclasses of CB, namely LCB (Log Control Block) and RCB (Report Control
Block) which again has the two subclasses BRCB (Buffered Report Control Block)
and URCB (Unbuffered Report Control Block).

The RCB class is defined with properties BufTm, ConfRev, Desc, GI, RptID and
SgNum.

e BufTm is intended to specify the amount of time for buffering of internal no-
tifications caused by trigger conditions dchg, qchg and dupd. From the first
notification a timer is set which expires after the amount of time specified by
BufTm. In this period, all events are buffered and when the timer expires, the
events are included in one report.

e ConfRev is the configuration revision number and represents the number of
times the referenced DATASET has been edited.

e Desc contains an optional description. GI indicates whether General Interroga-
tion is active.

e RptID isthe unique identification of the report and is of type string. It is defined
in the SCL file. SgNum is the sequence number and shall be incremented each
time a report is sent.

BRCB and URCB are defined with the RCB class as abstract class, and inherit all
properties and methods from the RCB class. In addition, BRCB has

e boolean property PurgeBuf indicating that buffered events that are not yet
sent, shall be discarded

64

e EntryID-property of type EntrylD used to identify an entry in a sequence of
events in a buffered report

e TimeOfEntry-property of type EntryTime which indicates the time when the
entry is added to the buffer

and URCB has

e the boolean property Resv indicating whether the control block is exclusively re-
served by a client in which case that client is the only one who can set attributes
of the URCB.

Finally, both the BRCB and URCB classes contain a method

notifyReport (DataReference, DATAAttribute, Trigger)

which creates an entry for a Report object. If the Report object is not created, the
notifyReport-method creates it by a call to the Report class constructor. The entry
is of type ReportEntryData, defined in the class with the same name. The Report
object also has its own type and is defined in the Report class.

The LCB is defined as a subclass of CB and is used for creating logentries in the LOG
object. It is a very simple class. It overrides the method

notifyLog(DataReference, DATAAttribute, Trigger)

which is defined in the CB class as part of the observer. Each time this function is
called a new LogEntry is created and passed on to the LOG class.

The LOG class is used to store changes and updates to the data model for future re-
trieval - if e.g. the client wants to know the status of the substation at a given time.
The LOG receives LogEntries from the LCB class and stores them in a buffer. This
buffer is designed as a circular buffer such that after a number of entries the buffer
begins to overwrite the old entries. The LOG class has two pairs of properties to keep
track of this circular buffer. First there are timestamps for oldest and newest entry -
OldEntrTm and NewEnt rTm respectively. Second there are two integer pointers that
point to the oldest and newest entry - 0O1dEntr and NewEntr. These two pointers
control the circular buffer - making sure that the new entries are entered at the right
place in the buffer.

4.4 Communication Module

The communication module makes it possible for a client to connect and request ser-
vices. The module consists of the TCPSocket class, the ConnectionHelper class and
the Envelope class. The TCPSocket class creates two sockets, 1istener for listening

65

for client requests, and socSender for transmitting responses and server-initiated
communication such as event reports.

The Envelope class defines the format used for transmitting data back and forth be-
tween the server and client. It contains a string property for the function and an
array list property for the arguments.

The TCPSocket class contains the method DoCommand which is intended to handle
requests by the client. The method takes an argument of type Envelope and executes
the command issued by the function property with the arguments contained in the
arguments property. The result is returned in a new Envelope object which is sent
back to the client as response. If only values are sent back, they are contained in the
arguments property and the function property is empty and shall be disregarded by
the client.

The ConnectionHelper class contains the compact formatter mentioned in section 3.4.
This formatter makes it possible to serialise data on the Compact Framework. For
transmissions over a TCP socket, all data must be sent in binary form and is there-
fore serialised with the compact formatter.

4.5 Device Module

The device module is the part of the system that handles input and output to the
RTU. It consists of the classes RTU32, WTOOL32, SystemLog and DeviceCommuni-
cation. These are all placed in the IEC61850 .Device project.

The WTOOLS32 class is an interface to the wtoo132.d11 library which is provided
in the RTU beforehand as the means of achieving input and output from and to the
RTU. This is a DLL library of functions for writing to the internal wtool32 database
on the RTU and reading from it. This database is continuously scanning inputs on
the RTU and contains the values of these inputs. Similarly, output is made by writing
values to this database upon which the output ports are set accordingly by the RTU.
The functions are made available in the IEC61850 server by DLL import.

The RTU32 class contains a thread TRtu which runs continuously. When it starts, it
initialises the wtool32 database by calling the WToo132Tnit ()-method of the wtool32
class. Thus, the thread is at all times scanning the inputs of the RTU. The values of
the inputs are sent to the DeviceCommunication class through the IDeviceReader in-
terface. It updates the data model accordingly.

66

The DeviceCommunication class updates data values through the updatevalue-
method. Furthermore, it observes the data model and is notified when changes occur
in data attributes. This may happen when the client issues control services assigning
values to data attributes. When such changes occur, it shall update the RTU in the
other direction, through the IDeviceWriter interface.

4.6 Substation Module

The Substation module is the main module for the implementation. At startup the
main method in Program.cs creates a new instance of a substation. The Substation
constructor has a path to an SCL file as argument.

The constructor creates first an instance of a TCPSocket that is used later for commu-
nication with the client. Secondly an SCLParser is created which parses through the
SCL file and thus creates the Information Model and Information Exchange Model
for the whole substation.

The SCLParser iterates through the SCL-file by first creating a instance of an Xml-
Document class. This instance provides functionality to navigate through the en-
tire file by starting at the RootElement. Each XmINode element typically has some
childNodes and some attributes. In order to parse through the entire file the parser
must make sure that every childNode of an XmlNode is visited. To configure a XmIN-
ode its collection of attributes are parsed one by one. These attribute names are
known beforehand and these are only parsed in order to get their assigned values.
Most of the parse-methods are quite similar to this function signature:

parselogicalNode (Server, LogicalDevice, XmlNode)

The Server is used to pair all object references with the corresponding object for later
retrieval. The LogicalDevice is the "parent” of this LogicalNode, so this LogicalNode
is stored in the list of LocicalNodes contained in the LogicalDevice. The final argu-
ment is the current XmlNode that shall be parsed. The code for parsing a logical node
is given below:

parselLogicalNode (Server server, LogicalDevice

logicalDevice, XmlNode node)

{
String 1nClass = getNodeValueById(node, "lInClass");
String 1nType = getNodeValueById(node, "lnType");
String inst = getNodeValueById(node, "inst");
String prefix = getNodeValueById(node, "prefix");
String desc = getNodeValueById(node, "desc");

67

LogicalNode logicalNode = server.newlLogicalNode (
logicalDevice,
InClass,
inst,
prefix,
desc) ;

//Parse children of node
XmlAttributeCollection atc = node.Attributes;
XmlNode n = findNodeType ("LNodeType", "id", 1nType);
parselLNodeType (server, logicalNode, n);
foreach (XmlNode xn in node.ChildNodes)
{
switch (xn.Name)
{
case "DOI":
parseDOI (xn) ;
break;
case "DataSet":
parseDataSet (server, logicalNode, xn);
break;
case "ReportControl":
parseReportControl (server, logicalNode, xn);
break;
case "LogControl":
parselLogControl (server, logicalNode, xn);
break;

}

The first part of the method defines the instance of LogicalNode. In the second part
of the method the parser iterates through the childNodes of this XmlNode. These are
DOI (Instantiated Data Object), DataSet, ReportControl and LogControl instances.

Creating the Information and Information Exchange Model consists of creating IED,
SERVER, LogicalDevice, LogicalNode, DATA and DataAttribute instances, adding
observers to the DATA, creating DATASET and ControlBlocks. The SCL file is typi-
cally a large file, so the parsing can take a while to complete.

The constructor then initialises the Device Module, which starts producing intputs
to the datamodel. Finally the communication module is started so that a client can
connect to the server to receive reports or utilize the offered services. The system
is now running and the RTU produces input to the data model which by using the

68

observer pattern can generate reports that can be sent to a connected client.

4.7 Conclusion

This chapter has explained the implementation of the basic IEC61850 server. The
overall structure of the solution is explained in section 4.1 where an overview is
given of the projects used. Section 4.2 explains the implementation of the informa-
tion model which contains the hierarchical data model with the basic objects of the
standard. In section 4.3, the implementation of the information exchange model is
described, where reporting and logging are implemented. Section 4.5 explains the
implementation of the device module with RTU input/output capabilities. Section 4.4
explains the communication module which allows a client to request services from
the server based serialised data transmission over a simple TCP socket connection.
The implementation of the substation module is explained in section 4.6. It initialises
the system based on the content of the SCL configuration file which is parsed. The
implementation has been carried out based on the analysis and design of the stan-
dard. The server has been implemented on the Brodersen RTU32 and runs under the
Windows CE operating system.

69

CHAPTER 5

TEST

In this chapter, the tests completed for the solution will be presented. First, a unit
test is presented in section 5.1 which tests the parsing of the SCL configuration file
and the contents of the data model. Second, a number of test cases are presented
which have been tested using black box testing. These tests are presented in section
5.2. Section 5.3 concludes the test chapter.

5.1 Unit Test

A unit test has been created which tests whether the system contains the expected
data model given a specific SCL file. The SCL file used for this test is included in
Appendix C. The unit test project file is found on the CD. The services tested are
GetServerDirectory, GetLogicalDeviceDirectory and GetLogicalNodeDirectory.

GetServerDirectory is invoked with parameter LogicalDevice. Expected outcome is a
list of object references of all logical devices of the server. The outcome is as expected.

GetLogicalDeviceDirectory is invoked with the object reference of a logical device as
parameter. Expected outcome is a list containing the logical nodes of the logical de-
vice. The outcome is as expected.

GetLogicalNodeDirectory is invoked with the object reference of a logical node and an
ACSI class as parameters. Expected outcome is a list of instance names of all objects
of the specified class in the logical node. The outcome is as expected.

5.2 Test Cases

This section presents cases which have been tested with black box testing. First,
retrieval of the contents of the data model is tested. This consists of services such

70

as GetDataDirectory and GetDataSetDirectory. Second, the reporting and logging
services are tested.

5.2.1 GetDataDirectory

Test: GetDataDirectory

Execution: The GetDataDirectory service is invoked with the object reference of
a Data as parameter.

Expected outcome: The data attribute names of all data attribute contained in the
specified Data are returned in a list.

Observed outcome: As expected.

5.2.2 GetDataSetDirectory

Test: GetDataSetDirectory

Execution: The GetDataSetDirectory service is invoked with the object reference
of a dataset as parameter.

Expected outcome: The object references of all data set members contained in the
specified dataset are returned in a list.

Observed outcome: As expected.

5.2.3 Logging

Test: Logging

Execution: An event is triggered (data updated, data changed or quality changed)
in data attributes referenced by a data set which is related to a log control block.
Expected outcome: A log entry is made.

Observed outcome: As expected.

5.2.4 Reporting

Test: Report

Execution: An event is triggered (data updated, data changed or quality changed)
in data attributes referenced by a data set which is related to a report control block.
Expected outcome: A report is generated. Depending on whether the control block
is BRCB or URCB, the report shall be buffered or unbuffered, respectively.
Observed outcome: As expected.

71

5.2.5 Connecting to the Server

Test: Connecting to the Server

Execution: A test client connects to the server and requests the GetServerDirectory
service with LogicalDevice as parameter.

Expected outcome: A list of logical devices on the server is sent to the client
Observed outcome: As expected.

5.3 Conclusion

This chapter has presented a unit test of the parsing of an SCL configuration file and
of the resulting content of the data model. Also, black box tests of basic information
model services have been performed and finally reporting and logging services and
client/server communication have been black box tested. The outcomes of these tests
are as expected.

72

CHAPTER 6

CONCLUSION

This chapter shall conclude the report. In section 6.1, a short summary is given of
the conclusions of the analysis, design, implementation and tests performed. Then a
summary of contributions is presented in section 6.2 and finally a list of suggestions
for future work is presented in section 6.3.

6.1 Summary of Results

The introduction of chapter 1 gives an introduction to the area of the IEC61850 stan-
dard and places the standard in a historical context. An introduction is also given to
Brodersen Controls A/S and the RTU32 provided by Brodersen. The chapter finally
gives an overall problem statement indicating the following goals for the project:

e provide an overview and analysis of the IEC61850 standard

e perform an analysis of the scenarios envisioned by Brodersen and place them in
relation to the scope of the IEC61850 standard

e design and implement a basic IEC61850 server

The analysis of chapter 2 outlines basic concepts of the IEC61850 standard and de-
cribes the different models defined in the standard. The hierarchical data model
of the information model is described and the definitions of the main classes, Server,
LogicalDevice, LogicalNode, DATA and DataAttribute are explained based on the def-
initions of [9], [10] and [11]. The logical node class definition is thoroughly explained,;
examples are given and logical nodes are grouped according to their functionality as
prescribed in [11].

The Abstract Communication Service Interface - defined in [9] - which contains the
services available for clients, is also explained in some detail. Basic information ser-
vices are described which allow the client to retrieve the structure and objects of the
data model, and other service models are described, such as services for reporting,
logging, control, setting groups and so on.

73

The communication model defined in [12], [13] and [14] is described in section 2.1.8.

The scenarios provided by Brodersen Controls A/S are listed and analysed in sections
2.2. The cases are placed in relation to the scope of the IEC61850 standard, and
requirements for IEC61850 classes and services are identified for an envisioned im-
plementation of these scenarios. Some of these requirements, however, fall outside
the scope of the standard.

The Brodersen RTU32 is briefly analysed in section 2.3 and it is explained how the
Windows CE operating system and Compact .NET Framework can affect implemen-
tation.

Based on the analysis of the standard, the scenarios and the RTU, as well as on the
problem definition, a specification of requirements is presented in section 2.4. The
requirements are aimed at the implementation of an IEC61850 server with basic
functionality such as reporting and logging.

Based on the analysis of chapter 2 and in particular the specification of requirements,
chapter 3 outlines the overall architecture of the solution and explaines the design of
classes and how they interact. The solution is divided into five modules, the infor-
mation model, information exchange module, communication module, device module
and substation module. Each of the modules are described by use of UML class di-
agrams and some of the basic operations of classes of each module are visualised in
sequence diagrams. It is explained how an observer design pattern can allow the
information exchange model to be updated when changes happen to the data model,
either because of input from the RTU or because of changes initiated from the client,
without the use of polling.

In continuation of the design, chapter 4 explains the implementation of the IEC61850
basic server. The modules information model, information exchange model, device,
communication and substation are explained. The substation module initialises the
system by invoking the SCLParser which parses the SCL configuration file and gen-
erates a data model on basis of the SCL file. The information exchange module makes
services available to a client. The device module supplies I/O capabilites to the RTU
and the communication module makes it possible for a client to connect to the server
and request services. The observer design pattern is implemented to keep the data
model updated according to inputs and also to update control blocks which monitor
the data model.

Chapter 5 gives an outline of the tests of the system and test results. Unit tests have
been performed on static services while black box testing has been performed on ser-
vices whose response are changing with time according to events. Outcomes are as

74

expected.

6.2 Summary of Contributions

The analysis of chapter 2 has given an overview of the IEC61850 standard and placed
the Brodersen RTU32 in relation to the scope of the standard. This analysis should
be a reasonable starting point for the company in planning how to place the RTU32
as a central component in the new communication structure implied in the standard.

In particular, the scenarios provided by Brodersen Controls A/S have been analysed
with respect to the IEC61850 standard and a number of features have been identi-
fied which are outside the scope of the standard. These features however, could quite
easily be implemented on the RTU, but would have to be carefully combined with the
IEC61850 server.

In addition to providing this analysis, a basic IEC61850 server has been designed and
implemented for the Brodersen RTU32. The following requirements were specified in
section 2.4:

e The solution shall implement a basic IEC61850 server which is able to run on a
Brodersen RTU32 under Windows CE

e It shall be possible to read a configuration file in SCL format for a substation

and have a data model with a server instance generated on the basis of the SCL
file

e A client shall be able to connect to the server and request basic ACSI services
such as reporting and logging

e The solution should be generic so that extension is possible later

As the chapters 3, 4 and 5 have demonstrated, these requirements have been ful-
filled. This should be a reasonably useful platform for further development of a fully
compliant IEC61850 system for the RTU32, since it has been strived to make the im-
plementation generic and easy to extend. The comprehensive nature of the IEC61850
standard means that there are rich possibilities for enhancing the implementation.
Some suggestions for enhancements are given in section 6.3 which follows.

6.3 Discussion and Future Work

This section lists suggestions for future work on the IEC61850 basic server. The
suggestions are divided into improvements of the implemented system (6.3.1) and

75

suggested additional IEC61850 functionality (6.3.2). In relation to this, it can be
mentioned that the supervisors and authors contemplate preparing an article on the

work carried out in this thesis in continuation of work by Kostic et al [16] and Schwarz
[20].

6.3.1 Improvements to the Basic IEC61850 Server Implemen-
tation

e More detailed data model: The data model designed and implemented consists
of only one class for logical node. Instead, all 91 logical node classes could be
designed as individual classes, which would make it possible to incorporate the
SCL check of the generated file in the constructor of each class. This would
also make it possible to ensure that rules regarding mandatory and optional
attributes are fulfilled at all times. Alternatively, a procedure should be imple-
mented which could ensure that all logical nodes in the data model at all times
comply with the rules for mandatory and optional attributes.

e Prioritised alarms: Functionality for giving higher priorities to particular event
reports could be added to the system. This would mean that the report han-
dler should take into account the priority of reports, and possibly supress re-
ports with lower priority until reports with higher priority were sent. The client
should be able to set and change the priority of datasets.

e Implement Brodersen scenarios: The scenarios provided by Brodersen are anal-
ysed in section 2.2 where it is uncovered that some extra functionality outside
the IEC61850 scope is needed. This includes functionality for mapping for in-
stance two input ports to one data model element. The mapping could be made
with some logical operators such as XOR. This would be a suitable extension to
the basic IEC61850 server implemented.

e SCL Editor: For this project, the Kalki SCLL Manager has been used to generate
SCL files for testing. In a full scale IEC61850 implementation, an IEC61850-
compliant SCL editor with file validation would be a useful feature for graphi-
cally configuring a substation.

6.3.2 Additional IEC61850 Functionality

e Association: The connection between a client and the IEC61850 server in the
solution presented in this project is a simple procedure which does not take into
account the Association service where clients receive an association ID upon
connecting to the system. The Association service must be implemented in order
for the system to keep track of which clients have received which reports and
alarms, and control which clients are allowed to edit which data sets and so on.

76

e Multiple Clients: The system can currently handle only one client, and in order

to extend it to handle multiple clients, concurrency issues must be considered as
well as proper access control. Also, as mentioned above, the association service
must be fully implemented.

Full ACSI: The proposed system is a basic IEC61850 server and there are a
number of services which have been disregarded in the design and implementa-
tion. Association has been mentioned, but services such as those of the control
model and setting group are also important for such a server to be of practical
use. The client should then be able to make use of the Select before operate
services in the control model. The system could undoubtedly be extended to
comprise a full ACSI, but for some services, such as GOOSE, the SCSM of the
standard using MMS over Ethernet would need to be implemented.

SCSM: The system has been implemented with only a simple socket connection
between the client and server. The IEC61850 defines that the MMS protocol
shall be included in the SCSM along with Ethernet. Possibly, web services will
become part of the standard in the future and would also be a possibility. The
communication module of the system could be replaced by one supporting MMS
over Ethernet and the other requirements of the SCSMs. This would make the
system interoperable which it is not currently.

77

BIBLIOGRAPHY

[1] Siemens AG. SCL validator and webpage, sponsored by UCA and Siemens.
http://www.61850.com/. A note on this webpage: The SCL validator itself is
available on the index page, but other resources cannot be reached from it. Menu
appearson e.g. http://www.61850.com/introduction.html which must be
entered manually.

[2] Klaus Peter Brand, Volker Lohmann, and Wolfgang Wimmer. Substation Au-
tomation Handbook. Utility Automation Consulting Lohmann, 2003.

[3] Brodersen Controls A/S. Brodersen Controls A/S Website. http://www.
brodersencontrols.dk/.

[4] Brodersen Controls A/S. RTU32 - A Universal Controller (Brochure).

[5] CET Center for Elteknologi. Projects at CET. http://www.dtu.dk/centre/
cet/forskning/projekter.aspx.

[6] IEC. IEC61850-5: Communication requirements for function and device models.

[7] TEC. IEC61850-6: Substation automation system configuration description lan-
guage.

[8] IEC. TEC61850-7-1: Basic communication structure for substation and feeder
equipment - Principles and models.

[9] IEC. TEC61850-7-2: Basic communication structure for substation and feeder
equipment - Abstract communication service interface (ACSI).

[10] IEC. IEC61850-7-3: Basic communication structure for substation and feeder
equipment - Common data classes.

[11] IEC. IEC61850-7-4: Basic communication structure for substation and feeder
equipment - Compatible logical node classes and data classes.

[12] IEC. IEC61850-8-1: Specific communication service mapping (SCSM) - Mapping
to MMS (ISO/IEC 9506 Part 1 and Part 2).

[13] IEC. IEC61850-9-1: Specific communication service mapping (SCSM) - Serial
unidirectional multidrop point to point link.

78

[14] IEC. IEC61850-9-2: Specific communication service mapping (SCSM) - Mapping
on a IEEE 802.3 based process.

[15] Hubert Kirrmann. Introduction to IEC 61850 substation communication stan-
dard. ABB Switzerland Ltd, Corporate Research, ABBCH-RD, 2004.

[16] T. Kostic, C. Frei, O. Preiss, and M. Kezunovic. Scenarios for data exchange
using standards IEC 61970 and IEC 61850. UCA User Group meeting, Cigre
Paris Session 2004, pages 3—4, 2004.

[17] KALKI Communication Technologies Limited. Kalki communication technolo-
gies webpage. http://www.kalkitech.com/.

[18] R. E. Mackiewicz. Overview of IEC61850 and Benefits. Power Systems Confer-
ence and Exposition, 2006. PSCE "06. 2006 IEEE PES, pages 623—630, 2006.

[19] Microsoft. Compact framework 2.0 webpage at microsoft developers net-
work. http://msdn2.microsoft.com/en-us/library/2weec7k5 (VS.80)
. aspx.

[20] Karlheinz Schwarz. IEC 61850, IEC 61400-25 and IEC 61970: Information mod-
els and information exchange for electric power systems. Distributech, 2004.

[21] Angelo SCotto. CompactFormatter Website. http://www.freewebs.com/
compactFormatter/About.html.

79

APPENDIX A

(GLOSSARY

AA - Application Association

ACSI - Abstract Communication Services Interface
API - Application Program Interface

ASDU - Application Service Data Unit

ASN.1 - Abstract Syntax Notation One

BDA - Basic Data Attribute (that is not structured)
BRCB - Buffered Report Control Block

CDC - Common Data Class (IEC 61850-7-3)

CIM - Common Information Model for energy management applications
CT - Current Transducer

DA - Data Attribute

DALI - Instantiated Data Attribute

DataRef - Data Reference

DAType - Data Attribute Type

dchg - data change trigger option

DO - DATA in IEC 61850, data object type or instance, depending on the context
DOI - Instantiated Data Object (DATA)

DS - Data Set

DTD - Document Type Definition

dupd - data-update trigger option

DUT - Device Under Test

FAT - Factory Acceptance Test

FC - Functional Constraint

FCD - Functionally Constrained Data

FCDA - Functionally Constrained Data Attribute
GI - General Interrogation

GoCB - GOOSE Control Block

GOOSE - Generic Object Oriented Substation Event
GPS - Global Positioning System (time source)
GsCB - GSSE Control Block

GSE - Generic Substation Event

GSSE - Generic Substation Status Event

HMI - Human Machine Interface

I/O - Input and Output contact or channels (depending on context)

80

ICD - IED Capability Description

ID - IDentifier

IED - Intelligent Electronic Device

IF - (Serial) Interface

IntgPd - Integrity Period

IP - Internet Protocol

LAN - Local Area Network

LC - Logical Connection

LCB - Log Control Block

LD - Logical Device

LDInst - Instantiated Logical Device

LLNO - Logical Node Zero

LN - Logical Node

LNinst - Instantiated Logical Node

LPHD - Logical Node Physical Device

MC - MultiCast

MCAA - MultiCast Application Association

MICS - Model Implementation Conformance Statement
MMS - Manufacturing Message Specification (ISO 9506 series)
MSYV - Multicast Sampled Value

MSVCB - MultiCast Sampled Value Control Block
MsvID - ID for MSV

NCC - Network Control Center

OSI - Open System Interconnection

PC - Physical Connection

PD - Physical Device

PDIS - DIStance Protection

PDU - Protocol Data Unit

PHD - Physical Device

PICOM - Plece of COMmunication

PICS - Protocol Implementation Conformance Statement
PIXIT - Protocol Implementation eXtra InformaTion
PTOC - Time OverCurrent Protection

PTRC - TRip Conditioning

qchg - Quality Change Trigger Option

RTU - Remote Terminal Unit

SAS - Substation Automation System

SAT - Site Acceptance Test

SAV - Sampled Analogue Value (IEC 61850-9 series)
SBO - Select Before Operate

SCADA - Supervisory Control And Data Acquisition
SCD - Substation Configuration Description

SCL - Substation Configuration Language

SCSM - Specific Communication Service Mapping

SDI - Instantiated Sub Data; middle name part of a structured DATA name
SG - Setting Group

SGCM - Setting Group Control Block

SMV - Sampled Measured Value

SoE - Sequence-of-Events

SSD - System Specification Description

SUT - Service Under Test

SV - Sampled Values

SVC - Sampled Values Control

TCI - TeleControl Interface (e.g. to NCC)

TCP - Transport Control Protocol

TMI - TeleMonitoring Interface (e.g. to engineers workplace)
TP - Two-Party

TPAA - Two Party Application Association
TrgOp - Trigger Option

UCA - Utility Communication Architecture
UML - Unified Modelling Language

URCB - Unbuffered Report Control Block

URI - Universal Resource Identifier

USVCB - Unicast Sampled Value Control Block
UsvID - ID for USV

UTC - Coordinated Universal Time

VMD - Virtual Manufacturing Device

VT - Voltage Transducer

XCBR - Circuit BReaker

XML - eXtensible Markup Language

82

APPENDIX B

DETAILS OF THE IEC61850
STANDARD

B.1 List of Logical Node Groups

Table B.1.1 shows the groups of logical nodes defined in 5.1 in [11].

B.2 ACSI Classes and Their Services

Table B.2.1 shows the complete list of ACSI classes and their services defined in 5.4
in [9].

83

Group Indicator

Logical Node Group

Automatic Control

Supervisory Control

Generic Function References

Interfacing and Archiving

System Logical Nodes

Metering and Measurement

Protection Functions

Protection Related Functions

Sensors, Monitoring

Instrument Transformer

Switchgear

Power Transformer and Related Functions

N = 4| 3) | o 2| e @l b

Further (Power System) Equipment

Table B.1.1: List of Logical Node Groups

SERVER model (Clause 6
GetServerDirectory

ASSOCIATION model (Clause 7
Associate

Abort

Release

LOGICAL-DEVICE model (Clause 8
GetLogicalDeviceDirectory

LOGICAL-NODE model (Clause 9
GetlLogicalNodeDirectory
GetAllDataValues

DATA model (Clause 10)
GetDataValues
SetDataValues
GetDataDirectory
GetDataDefinition

DATA-SET model (Clause 11)
GetDataSetValues
SetDataSetValues
CreateDataSet

DeleteDataSet
GetDataSetDirectory

Substitution model (Clause 12
SetDataValues

GetDataValues
SETTING-GROUP-CONTROL-BLOCK model
(Clause 13)

SelectActiveSG

SelectEditSG

SetSGValues
ConfirmEditSGValues
GetSGValues

GetSGCBValues

REPORT-CONTROL-BLOCK and LOG-CONTROL-

BLOCK model (Clause 14
BUFFERED-REPORT-CONTROL-BLOCK

Report

GetBRCBValues

SetBRCBValues
UNBUFFERED-REPORT-CONTROL-BLOCK:

Report

GetURCBValues

SetURCBValues

LOG-CONTROL-BLOCK model:
GetLCBValues
SetLCBValues
QueryLogByTime
QueryLogAfter
GetlLogStatusValues

Generic substation event model —

GSE (Clause 15)

GOOSE
SendGOOSEMessage
GetGoReference
GetGOOSEElementNumber
GetGoCBValues
SetGoCBValues

GSSE
SendGSSEMessage
GetGsReference
GetGSSEDataOffset
GetGsCBValues
SetGsCBValues

Transmission of sampled values model
(Clause 16)
MULTICAST-SAMPLE-VALUE-CONTROL-BLOCK:

SendMSVMessage

GetMSVCBValues

SetMSVCBValues
UNICAST-SAMPLE-VALUE-CONTROL-BLOCK:

SendUSVMessage

GetUSVCBValues

SetUSVCBValues

Control model (Clause 17
Select

SelectWithValue

Cancel

Operate
CommandTermination
TimeActivatedOperate

Time and time synchronization (Clause 18)
TimeSynchronization

EILE transfer model (Clause 20
GetFile

SetFile

DeleteFile

GetFileAttributeValues

Table B.2.1: Complete List of ACSI Classes and Their Services

Table B.2.2

OO W N

85

APPENDIX C

SCL TEST FILE

SCL file used for unit test

<?xml version="1.0" encoding="UTF-16" ?>
— <!— This file is generated using KALKI SCL Manager IEC61850 Configuration Tool (wuww.kalkitech .
com)
—>
— <SCL xmlns="http://www.iec.ch/61850/2003/SCL">
<Header id="" version="" revision="" toolID="" nameStructure="IEDName" />
— <IED name="IED1">
— <Services>

<DynAssociation />
<GetDirectory />
<GetDataObjectDefinition />
<GetDataSetValue />
<DataSetDirectory />
<ConfDataSet max="0" maxAttributes="0" modify="false" />
<ReadWrite />
<ConfReportControl max="0" />
<GetCBValues />
<ConfLogControl max="0" />
<ConfLNs fixPrefix="true" fixLnInst="true" />
<GOOSE max="0" />
<FileHandling />
</Services>
— <AccessPoint name="AccPointl" desc="">
— <Server>
<Authentication />
— <LDevice inst="RTU" desc="">
— <ILNO InClass="LLNO" InType="LLNO1" inst="" desc="">
— <DOI name="Mod">

— <DAI name="ctlModel ">
<Val>status—only</Val>
</DAI>
</DOI>
</LNO>

<IN InClass="LPHD" InType="LPHD1" inst="1" prefix="" desc="" />
— <IN InClass="CALH" InType="CALH1" inst="1" prefix="" desc="">
— <DOI name="Mod">

— <DAI name="ctlModel ">
<Val>status—only</Val>
</DAI>
</DOI>
</LN>

— <IN InClass="XSWI" InType="XSWI1" inst="1" prefix="" desc="">
— <DOI name="Mod">
— <DAI name="ctlModel ">

<Val>status—only</Val>

</DAI>

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

67
68

70
71

73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

86

</DOI>

<DOI name="Pos">

<DAI name="ctlModel ">

<Val>status—only</Val>

</DAI>

</DOI>

<DOI name="BlkOpn">

<DAI name="ctlModel ">

<Val>status—only</Val>

</DAI>

</DOI>

<DOI name="BlkCls">

<DAI name="ctlModel ">

<Val>status—only</Val>

</DAI>

</DOI>

</LN>

<IN InClass="MMXN"' InType="MMXNI" inst="1" prefix="" desc="">

<DOI name="Mod">

<DAI name="ctlModel ">

<Val>status—only</Val>

</DAI>

</DOI>

</LN>

<IN InClass="PTUV" InType="PTUV1" inst="1" prefix="" desc="">

<DataSet name="Monitoring" desc="">

<FCDA 1dInst="RTU" prefix="" InClass="PTUV" InInst="1" doName="Op" daName="general" fc="ST" />

<FCDA 1dInst="RTU" prefix="" InClass="CALH" InInst="1" doName="GrAlm" daName="stVal" fc="ST" />

<FCDA 1dInst="RTU" prefix="" InClass="MMXN' InInst="1" doName="Vol" daName="mag" fc="MX" />

<FCDA 1dInst="RTU" prefix="" InClass="XSWI" InInst="1" doName="Pos" daName="stVal" fc="ST" />

</DataSet>

<ReportControl name="myReport" datSet="Monitoring" intgPd="0" confRev="0" bufTime="0" buffered=
"true" rptID="RTU" desc="">

<TrgOps dchg="true" dupd="true" />

<OptFields timeStamp="true" dataSet="true" reasonCode="true" />

</ReportControl>

<LogControl name="Log" datSet="Monitoring" logName="rtuLOG">

<TrgOps dchg="true" qchg="true" />

</LogControl>

<DOI name="Mod">

<DAI name="ctlModel ">

<Val>status—only</Val>

</DAI>

</DOI>

<DOI name="StrVal">

<SDI name="minVal">

<DAI name="f">

<Val>50</Val>

</DAI>

</SDI>

</DOI>

</LN>

</LDevice>

</Server>

</AccessPoint>

</IED>

<DataTypeTemplates>

<LNodeType id="LLNO1" InClass="LLNO">

<DO name="Mod" type="INC_1_Mod" />

<DO name="Beh" type="INS_1_Beh" />

<DO name="Health" type="INS_1_Beh" />

<DO name="NamPIt" type="LPL_1_NamPIlt" />

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

87

</LNodeType>

<LNodeType id="LPHD1" InClass="LPHD">

<DO name="PhyNam" type="DPL_1 PhyNam" />

<DO name="PhyHealth" type="INS_1_Beh" />

<DO name="Proxy" type="SPS_1_Proxy" />
</LNodeType>

<LNodeType id="PTUV1" InClass="PTUV">

<DO name="Mod" type="INC_3_Mod" />

<DO name="Beh" type="INS_3_Beh" />

<DO name="Health" type="INS_3_Beh" />

<DO name="NamPIt" type="LPL_4_NamPIlt" />

<DO name="Str" type="ACD_2_Str" />

<DO name="Op" type="ACT_ 2 _Op" />

<DO name="StrVal" type="ASG_2_StrVal" />
</LNodeType>

<LNodeType id="CALH1" InClass="CALH">

<DO name="Mod" type="INC_1_Mod" />

<DO name="Beh" type="INS_1_Beh" />

<DO name="Health" type="INS_1_Beh" />

<DO name="NamPIt" type="LPL_2_NamPIlt" />

<DO name="GrAlm" type="SPS_1_Proxy" />
</LNodeType>

<LNodeType id="XSWI1" InClass="XSWI">

<DO name="Mod" type="INC_1 _Mod" />

<DO name="Beh" type="INS_1_Beh" />

<DO name="Health" type="INS_1_Beh" />

<DO name="NamPIt" type="LPL_2_NamPlt" />

<DO name="Loc" type="SPS_1_Proxy" />

<DO name="OpCnt" type="INS_1_Beh" />

<DO name="Pos" type="DPC_1_Pos" />

<DO name="BlkOpn" type="SPC_1_BlkOpn" />

<DO name="BlkCls" type="SPC_1_BlkOpn" />

<DO name="SwTyp" type="INS_1_Beh" />

<DO name="SwOpCap" type="INS_1_Beh" />
</LNodeType>

<LNodeType id="MMXN1" InClass="MMXN">

<DO name="Mod" type="INC_2_Mod" />

<DO name="Beh" type="INS_2_Beh" />

<DO name="Health" type="INS_2_Beh" />

<DO name="NamPIlt" type="LPL_3_NamPIlt" />

<DO name="Vol" type="MV_1_Vol" />

</LNodeType>

<DOType id="LPL_1_NamPIlt" cdc="LPL">

<DA name="vendor" bType="VisString255" fc="DC" />
<DA name="swRev" bType="VisString255" fc="DC" />
<DA name="d" bType="VisString255" fc="DC" />

<DA name="configRev" bType="VisString255" fc="DC" />
<DA name="1dNs" bType="VisString255" fc="EX" />
</DOType>

<DOType id="INS_1_Beh" cdc="INS">

<DA name="stVal" bType="INT8" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />
<DA name="t" bType="Timestamp" fc="ST" />

<DA name="subEna" bType="BOOLEAN" fc="SV" />

<DA name="subVal" bType="INT8" fc="SV" />

<DA name="subQ" bType="Quality" fec="SV" />

<DA name="subID" bType="VisString64" fc="SV" />
</DOType>

<DOType id="INC_1_Mod" cdc="INC">

<DA name="Cancel" type="INCCancel_1" bType="Struct" fc="CO" />
<DA name="stVal" bType="INT8" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

88

<DA name=
<DA name=
<DA name=
<DA name=
<DA name=
<DA name=
</DOType>

<DA name=
<DA name=
<DA name=
<DA name=
<DA name=
<DA name=
<DA name=
</DOType>

<DA name=
</DOType>

<DA name=
</DOType>

<DA name=
<DA name=

<DA name=
</DOType>

</DOType>

</DOType>

</DOType>

<DA name=

"t" bType="Timestamp" fc="ST" />

"subEna" bType="BOOLEAN" fc="SV" />

"subVal" bType="INT8" fc="SV" />

"subQ" bType="Quality" fc="SV" />

"subID" bType="VisString64" fc="SV" />

"ctlModel" type="ctIModelEnum" bType="Enum" fc="CF" />

<DOType id="SPS_1_Proxy" cdc="SPS">

"stVal" bType="BOOLEAN" fc="ST" dchg="true" />
"q" bType="Quality" fc="ST" qchg="true" />

"t" bType="Timestamp" fc="ST" />

"subEna" bType="BOOLEAN" fc="SV" />

"subVal" bType="BOOLEAN" fc="SV" />

"subQ" bType="Quality" fec="SV" />

"subID" bType="VisString64" fc="SV" />

<DOType id="DPL_1_PhyNam" cdc="DPL">

"vendor" bType="VisString255" fc="DC" />

<DOType id="ASG_2_StrVal" cdc="ASG">

"minVal" type="AnalogueValue_2" bType="Struct" fc="CF" />

<DOType id="LPL_2_NamPIlt" cdc="LPL">

"vendor" bType="VisString255" fc="DC" />
"swRev" bType="VisString255" fc="DC" />
"d" bType="VisString255" fc="DC" />

<DOType id="SPC_1_BlkOpn" cdc="SPC">
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="

Cancel" type="SPCCancel_1" bType="Struct" fc="CO" />
stVal" bType="BOOLEAN" fc="ST" dchg="true" />

q" bType="Quality" fc="ST" qchg="true" />

t" bType="Timestamp" fc="ST" />

subEna" bType="BOOLEAN" fc="SV" />

subVal" bType="BOOLEAN" fc="SV" />

subQ" bType="Quality" fc="SV" />

subID" bType="VisString64" fc="SV" />

ctlModel" type="ctlModelEnum" bType="Enum" fc="CF" />

<DOType id="DPC_1_Pos" cdc="DPC">
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="

Cancel" type="DPCCancel_1" bType="Struct" fc="CO" />
stVal" bType="Dbpos" fc="ST" dchg="true" />

q" bType="Quality" fc="ST" qchg="true" />

t" bType="Timestamp" fc="ST" />

subEna" bType="BOOLEAN" fc="SV" />

subVal" bType="Dbpos" fc="SV" />

subQ" bType="Quality" fc="SV" />

subID" bType="VisString64" fc="SV" />

ctlModel" type="ctlModelEnum" bType="Enum" fc="CF" />

<DOType id="MV_1_Vol" cdc="MV"'>
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="
<DA name="

instMag" type="AnalogueValue_1" bType="Struct" fc="MX" />

mag" type="AnalogueValue_1" bType="Struct" fc="MX" dchg="true" />
q" bType="Quality" fc="MX" qchg="true" />

t" bType="Timestamp" fc="MX" />

subEna" bType="BOOLEAN" fc="SV" />

subMag" type="AnalogueValue_1" bType="Struct" fc="SV" />

subQ" bType="Quality" fc="SV" />

subID" bType="VisString64" fc="SV" />

db" bType="INT32U" fc="CF" />

<DOType id="LPL_3_NamPIt" cdc="LPL">

"vendor" bType="VisString255" fc="DC" />

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

89

<DA name="swRev" bType="VisString255" fc="DC" />
<DA name="d" bType="VisString255" fc="DC" />
</DOType>

<DOType id="INS_2_Beh" cdc="INS">

<DA name="stVal" bType="INT8" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />
<DA name="t" bType="Timestamp" fc="ST" />

<DA name="subEna" bType="BOOLEAN" fc="SV" />

<DA name="subVal" bType="INT8" fc="SV" />

<DA name="subQ" bType="Quality" fc="SV" />

<DA name="subID" bType="VisString64" fc="SV" />
</DOType>

<DOType id="INC_2_Mod" cdc="INC">

<DA name="Cancel" type="INCCancel_2" bType="Struct" fc="CO" />
<DA name="stVal" bType="INT8" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />
<DA name="t" bType="Timestamp" fc="ST" />

<DA name="subEna" bType="BOOLEAN" fc="SV" />

<DA name="subVal" bType="INT8" fc="SV" />

<DA name="subQ" bType="Quality" fc="SV" />

<DA name="subID" bType="VisString64" fc="SV" />

<DA name="ctlModel" type="ctIModelEnum" bType="Enum" fc="CF" />
</DOType>

<DOType id="ASG_1_StrVal" cdc="ASG">

<DA name="minVal" type="AnalogueValue_2" bType="Struct" fc="CF" />
<DA name="maxVal" type="AnalogueValue_2" bType="Struct" fc="CF" />

</DOType>

<DOType id="ACT 2_Op" cdc="ACT">

<DA name="general" bType="BOOLEAN" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />

<DA name="t" bType="Timestamp" fc="ST" />

</DOType>

<DOType id="ACD_2_Str" cdc="ACD">

<DA name="general" bType="BOOLEAN" fc="ST" dchg="true" />

<DA name="dirGeneral" type="dirGeneralEnum" bType="Enum" fc="ST"

<DA name="q" bType="Quality" fc="ST" qchg="true" />
<DA name="t" bType="Timestamp" fc="ST" />

</DOType>

<DOType id="LPL_4_NamPIt" cdc="LPL">

<DA name="vendor" bType="VisString255" fc="DC" />
<DA name="swRev" bType="VisString255" fc="DC" />
<DA name="d" bType="VisString255" fc="DC" />
</DOType>

<DOType id="INS_3_Beh" cdc="INS">

<DA name="stVal" bType="INT8" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />
<DA name="t" bType="Timestamp" fc="ST" />

<DA name="subEna" bType="BOOLEAN" fc="SV" />

<DA name="subVal" bType="INT8" fc="SV" />

<DA name="subQ" bType="Quality" fec="SV" />

<DA name="subID" bType="VisString64" fc="SV" />
</DOType>

<DOType id="INC_3_Mod" cdc="INC">

<DA name="Cancel" type="INCCancel_3" bType="Struct" fc="CO" />
<DA name="stVal" bType="INT8" fc="ST" dchg="true" />
<DA name="q" bType="Quality" fc="ST" qchg="true" />
<DA name="t" bType="Timestamp" fc="ST" />

<DA name="subEna" bType="BOOLEAN" fc="SV" />

<DA name="subVal" bType="INT8" fc="SV" />

<DA name="subQ" bType="Quality" fe="SV" />

<DA name="subID" bType="VisString64" fc="SV" />

<DA name="ctlModel" type="ctlModelEnum" bType="Enum" fc="CF" />

dchg="true" />

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

90

</DOType>

<DAType id="INCCancel_1">

<BDA name="ctlVal" bType="INT8" />

<BDA name="origin" type="Originator_1" bType="Struct"
<BDA name="ctINum" bType="INT8U" />

<BDA name="T" bType="Timestamp" />

<BDA name="Test" bType="BOOLEAN" />

</DAType>

<DAType id="Originator_1">

<BDA name="orCat" type="orCatEnum" bType="Enum" />
<BDA name="orIdent" bType="Octet64" />

</DAType>

<DAType id="SPCCancel_1">

<BDA name="ctlVal" bType="BOOLEAN" />

<BDA name="origin" type="Originator_1" bType="Struct"
<BDA name="ctINum" bType="INT8U" />

<BDA name="t" bType="Timestamp" />

<BDA name="Test" bType="BOOLEAN" />

</DAType>

<DAType id="DPCCancel_1">

<BDA name="ctlVal" bType="BOOLEAN" />

<BDA name="origin" type="Originator_1" bType="Struct"
<BDA name="ctINum" bType="INT8U" />

<BDA name="t" bType="Timestamp" />

<BDA name="Test" bType="BOOLEAN" />

</DAType>

<DAType id="AnalogueValue_1">

<BDA name="f" bType="FLOAT32" />

</DAType>

<DAType id="INCCancel_2">

<BDA name="ctlVal" bType="INT8" />

<BDA name="origin" type="Originator_1" bType="Struct"
<BDA name="ctINum" bType="INT8U" />

<BDA name="t" bType="Timestamp" />

<BDA name="Test" bType="BOOLEAN" />

</DAType>

<DAType id="Originator_3">

<BDA name="orCat" type="orCatEnum" bType="Enum" />
<BDA name="orIdent" bType="Octet64" />

</DAType>

<DAType id="Originator_2">

<BDA name="orCat" type="orCatEnum" bType="Enum" />
<BDA name="orIdent" bType="Octet64" />

</DAType>

<DAType id="AnalogueValue_2">

<BDA name="f" bType="FLOAT32" />

</DAType>

<DAType id="INCCancel_3">

<BDA name="ctlVal" bType="INT8" />

<BDA name="origin" type="Originator_1" bType="Struct"
<BDA name="ctINum" bType="INT8U" />

<BDA name="t" bType="Timestamp" />

<BDA name="Test" bType="BOOLEAN" />

</DAType>

<DAType id="Originator_4">

<BDA name="orCat" type="orCatEnum" bType="Enum" />
<BDA name="orIdent" bType="Octet64" />

</DAType>

<EnumType id="orCatEnum">

<EnumVal ord="0">not—supported</EnumVal>

<EnumVal ord="1">bay—control</EnumVal>

<EnumVal ord="2">station—control</EnumVal>

/>

/>

/>

/>

/>

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

91

<EnumVal
<EnumVal
<EnumVal
<EnumVal
<EnumVal
<EnumVal

ord="3">remote—control</EnumVal>
ord="4">automatic—bay</EnumVal>
ord="5">automatic—station</EnumVal>
ord="6">automatic—-remote</EnumVal>
ord="7">maintenance</EnumVal>
ord="8">process</EnumVal>

</EnumType>
<EnumType id="dirGeneralEnum">

<EnumVal
<EnumVal
<EnumVal
<EnumVal

ord="0">unknown</EnumVal>
ord="1">forward</EnumVal>
ord="2">backward</EnumVal>
ord="3">both</EnumVal>

</EnumType>
<EnumType id="ctlIModelEnum">

<EnumVal
<EnumVal
<EnumVal
<EnumVal
<EnumVal

ord="0">status—only</EnumVal>

ord="1">direct —with—normal-security</EnumVal>
ord="2">sbo—with-normal-security</EnumVal>
ord="3">direct —with—enhanced—security</EnumVal>
ord="4">sbo—with—enhanced—security</EnumVal>

</EnumType>
<EnumType id="rangeEnum">

<EnumVal
<EnumVal
<EnumVal
<EnumVal

ord="0">normal</EnumVal>
ord="1">high</EnumVal>
ord="2">low</EnumVal>
ord="3">high—high</EnumVal>

<EnumVal ord="4">low—low</EnumVal>
</EnumType>

</DataTypeTemplates>

</SCL>

